Faria, J. M. (2017). Non-determinism and failure modes in
machine learning. In 2017 IEEE International Sympo-
sium on Software Reliability Engineering Workshops
(ISSREW), pages 310–316. IEEE.
Federal Aviation Administration (2000). Installation of ter-
rain awareness and warning system (taws) approved
for part 23 airplanes. accessed: 1 August 2020.
Federal Aviation Administration (2017). Airworthiness ap-
proval of traffic alert and collision avoidance systems
(tcas ii), versions 7.0 & 7.1 and associated mode s
transponders. accessed: 1 August 2020.
Forsberg, H., Lindén, J., Hjorth, J., Månefjord, T., and
Daneshtalab, M. (2020). Challenges in using neu-
ral networks in safety-critical applications. In 2020
AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC), pages 1–7. IEEE.
Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A
neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576.
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. (2018). Imagenet-
trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv
preprint arXiv:1811.12231.
Geng, H., Guan, J., Pan, H., and Fu, H. (2018). Multiple ve-
hicle detection with different scales in urban surveil-
lance video. In 2018 IEEE Fourth International Con-
ference on Multimedia Big Data (BigMM), pages 1–4.
IEEE.
Hendrycks, D. and Dietterich, T. G. (2018). Benchmarking
neural network robustness to common corruptions and
surface variations. arXiv preprint arXiv:1807.01697.
ICAO, A. (2019). State of global aviation safety. Montreal,
Canada.
Inoue, H. (2018). Data augmentation by pairing sam-
ples for images classification. arXiv preprint
arXiv:1801.02929.
J.Steward (2018). Tesla’s autopilot was involved in another
deadly car crash. accessed: 1 August 2020.
Levin, A. and Vidimlic, N. (2020). Improving situational
awareness in aviation: Robust vision-based detection
of hazardous objects.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M., and
Sjödin, M. (2020). Deepmaker: A multi-objective op-
timization framework for deep neural networks in em-
bedded systems. Microprocessors and Microsystems,
73:102989.
Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bring-
mann, O., Ecker, A. S., Bethge, M., and Brendel, W.
(2019). Benchmarking robustness in object detection:
Autonomous driving when winter is coming. arXiv
preprint arXiv:1907.07484.
Mitsa, T. (2019). How Do You Know You Have Enough
Training Data? accessed: 1 August 2020.
Mittal, A., Soundararajan, R., and Bovik, A. C. (2012).
Making a “completely blind” image quality analyzer.
IEEE Signal Processing Letters, 20(3):209–212.
O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli,
S., Hernandez, G. V., Krpalkova, L., Riordan, D., and
Walsh, J. (2019). Deep learning vs. traditional com-
puter vision. In Science and Information Conference,
pages 128–144. Springer.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on
image data augmentation for deep learning. Journal
of Big Data, 6(1):60.
Skybrary (2017). B744 / vehicle, luxembourg airport, lux-
embourg 2010. accessed: 1 August 2020.
Smith, L. N. (2017). Cyclical learning rates for training
neural networks. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 464–
472. IEEE.
Taylor, L. and Nitschke, G. (2017). Improving deep learn-
ing using generic data augmentation. arXiv preprint
arXiv:1708.06020.
Tzutalin (2015). Labellmg. accessed: 1 August 2020.
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.
(2019). Detectron2.
Zhang, L., Zhai, Z., He, L., Wen, P., and Niu, W. (2019).
Infrared-inertial navigation for commercial aircraft
precision landing in low visibility and gps-denied en-
vironments. Sensors, 19(2):408.
Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Ob-
ject detection with deep learning: A review. IEEE
transactions on neural networks and learning systems,
30(11):3212–3232.
Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2017).
Random erasing data augmentation. arXiv preprint
arXiv:1708.04896.
Image Synthesisation and Data Augmentation for Safe Object Detection in Aircraft Auto-landing System
135