Fukuda, H., Uchiyama, T., Haneishi, H.and Yamaguchi, M.,
and Ohyama, N. (2005). Development of 16-band
multispectral image archiving system. In Proceedings
of SPIE, pages 136–145.
Geelen, B., Tack, N., and Lambrechts, A. (2014). A com-
pact snapshot multispectral imager with a monolithi-
cally integrated per-pixel filter mosaic. In Proceedings
of SPIE, volume 8974, page 89740L.
Gupta, M. and Ram, M. (2019). Weighted bilinear in-
terpolation based generic multispectral image demo-
saicking method. Journal of Graphic Era University,
7(2):108–118.
Habtegebrial, T. A., Reis, G., and Stricker, D. (2019).
Deep convolutional networks for snapshot hypercpec-
tral demosaicking. In 10th Workshop on Hyperspec-
tral Imaging and Signal Processing: Evolution in Re-
mote Sensing, pages 1–5.
Jaiswal, S. P., Fang, L., Jakhetiya, V., Pang, J., Mueller, K.,
and Au, O. C. (2017). Adaptive multispectral demo-
saicking based on frequency-domain analysis of spec-
tral correlation. IEEE Transactions on Image Process-
ing, 26(2):953–968.
Junior, J. D., Backes, A. R., and Escarpinati, M. C. (2019).
Detection of control points for uav-multispectral
sensed data registration through the combining of
feature descriptors. In Proceedings of International
Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications( VISI-
GRAPP), pages 444–451.
MacLachlan, A., Roberts, G., Biggs, E., and Boruff, B.
(2017). Subpixel land-cover classification for im-
proved urban area estimates using landsat. Interna-
tional Journal of Remote Sensing, 38(20):5763–5792.
Mangai, U., Samanta, S., Das, S.and Chowdhury, P., Vargh-
ese, K., and Kalra, M. (2010). A hierarchical multi-
classifier framework for landform segmentation using
multi-spectral satellite images-a case study over the
indian subcontinent. In IEEE Fourth Pacific-Rim Sym-
posium on Image and Video Technology, pages 306–
313.
Miao, L. and Qi, H. (2006). The design and evaluation of a
generic method for generating mosaicked multispec-
tral filter arrays. IEEE Transactions on Image Pro-
cessing, 15(9):2780–2791.
Miao, L., Ramanath, R., and Snyder, W. E. (2006). Binary
tree-based generic demosaicking algorithm for mul-
tispectral filter arrays. IEEE Transactions on Image
Processing, 15(11):3550–3558.
Mihoubi, S., Losson, O., Mathon, B., and Macaire, L.
(2015). Multispectral demosaicking using intensity-
based spectral correlation. In Proceedings of the 5th
International Conference on Image Processing The-
ory, Tools and Applications, pages 461–466.
Mihoubi, S., Losson, O., Mathon, B., and Macaire, L.
(2017). Multispectral demosaicing using pseudo-
panchromatic image. IEEE Transactions on Compu-
tational Imaging, 3(4):982–995.
Mizutani, J., Ogawa, S., Shinoda, K., Hasegawa, M., and
Kato, S. (2014). Multispectral demosaicking algo-
rithm based on inter-channel correlation. In Proceed-
ings of the IEEE Visual Communications and Image
Processing Conference, pages 474–477.
Monno, Y., Kiku, D., Kikuchi, S., Tanaka, M., and Oku-
tomi, M. (2014). Multispectral demosaicking with
novel guide image generation and residual interpola-
tion. In Proceedings of IEEE International Confer-
ence on Image Processing, pages 645–649.
Monno, Y., Kikuchi, S., Tanaka, M., and Okutomi, M.
(2015). A practical one-shot multispectral imaging
system using a single image sensor. IEEE Transac-
tions on Image Processing, 24(10):3048–3059.
Monno, Y., Tanaka, M., and Okutomi, M. (2011). Multi-
spectral demosaicking using adaptive kernel upsam-
pling. In Proceedings of IEEE International Confer-
ence on Image Processing, pages 3157–3160.
Monno, Y., Tanaka, M., and Okutomi, M. (2012). Multi-
spectral demosaicking using guided filter. In Proceed-
ings of the SPIE Electronic Imaging Annual Sympo-
sium, pages 82990O–1–82990O–7.
Ohsawa, K., Ajito, T., Komiya, Y.and Fukuda, H., Haneishi,
H., Yamaguchi, M., and Ohyama, N. (2004). Six band
hdtv camera system for spectrum-based color repro-
duction. Journal of Imaging Science and Technology,
48(2):85–92.
Pichette, J., Laurence, A., Angulo, L., Lesage, F.,
Bouthillier, A., Nguyen, D., and Leblond, F. (2016).
Intraoperative video-rate hemodynamic response as-
sessment in human cortex using snapshot hyperspec-
tral optical imaging. Neurophotonics, 3(4):045003.
Qin, J., Chao, K., Kim, M. S., Lu, R., and Burks, T. F.
(2013). Hyperspectral and multi spectral imaging for
evaluating food safety and quality. Journal of Food
Engineering, 118(2):157–171.
Shopovska, I., Jovanov, L., and Philips, W. (2018). RGB-
NIR demosaicing using deep residual U-Net. In 26th
Telecommunications Forum, pages 1–4.
Thomas, J.-B., Lapray, P.-J., Gouton, P., and Clerc, C.
(2016). Spectral characterization of a prototype sfa
camera for joint visible and nir acquisition. Sensor,
16:993.
Vayssade, J., Jones, G., Paoli, J., and Gee, C. (2020). Two-
step multi-spectral registration via key-point detec-
tor and gradient similarity: Application to agronomic
scenes for proxy-sensing. In Proceedings of Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications(
VISIGRAPP), pages 103–110.
Yasuma, F., Mitsunaga, T., Iso, D., and Nayar, S. (2010).
Generalized assorted pixel camera: Postcapture con-
trol of resolution, dynamic range, and spectrum. IEEE
Transactions on Image Processing, 19(9):2241–2253.
Zenteno, O., Treuillet, S., and Lucas, Y. (2019). 3d cylin-
der pose estimation by maximization of binary masks
similarity: A simulation study for multispectral en-
doscopy image registration. In Proceedings of Inter-
national Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications(
VISIGRAPP), pages 857–864.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
336