subspace alignment. Proceedings of the IEEE
International Conference on Computer Vision, 2960–
2967. https://doi.org/10.1109/ICCV.2013.368
Hart, S. G., & Staveland, L. E. (1988). Development of
NASA-TLX (Task Load Index): Results of Empirical
and Theoretical Research. Advances in Psychology,
52(C), 139–183. https://doi.org/10.101 6/S0166-
4115(08)62386-9
Hogervorst, M. A., Brouwer, A. M., & van Erp, J. B. F.
(2014). Combining and comparing EEG, peripheral
physiology and eye-related measures for the assessment
of mental workload. Frontiers in Neuroscience,
8(OCT). https://doi.org/10.3389/fnin s.2014.00322
Hwang, T., Kim, M., Hwangbo, M., & Oh, E. (2014).
Comparative analysis of cognitive tasks for modeling
mental workload with electro encephalogram. Conf.
Proceedings : Annual International Conference of the
IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society.
Annual Conference, 2014, 2661–2665.
https://doi.org/10.1109/EMB C.2014.6944170
Mehta, R. K., & Agnew, M. J. (2012). Influence of mental
workload on muscle endurance, fatigue, and recovery
during intermittent static work. European Journal of
Applied Physiology, 112(8), 2891–2902. https://doi.
org/10.1007/s00421-011-2264-x
Mueller, K. R., Tangermann, M., Dornhege, G., Krauledat,
M., Curio, G., & Blankertz, B. (2008). Machine
learning for real-time single-trial EEG-analysis: From
brain-computer interfacing to mental state monitoring.
Journal of Neuroscience Methods, 167(1), 82–90.
https://doi.org/10.1016/j.jneu meth.2007.09.022
Taylor, G., Reinerman-Jones, L., Cosenzo, K., &
Nicholson, D. (2010). Comparison of Multiple
Physiological Sensors to Classify Operator State in
Adaptive Automation Systems. Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting, 54(3), 195–199. https://doi.org/10.1177
/154193121005400302
Theorell, T., Perski, A., Akerstedt, T., Sigala, F., Ahlberg-
Hultén, G., Svensson, J., & Eneroth, P. (1988). Changes
in job strain in relation to changes in physiological state.
A longitudinal study. Scandinavian Journal of Work,
Environment & Health, 14(3), 189–196.
https://doi.org/10.5 271/sjweh.1932
Venthur, B., Blankertz, B., Gugler, M. F., & Curio, G.
(2010). Novel applications of BCI technology:
Psychophysiological optimization of working
conditions in industry. Conference Proceedings - IEEE
International Conference on Systems, Man and
Cybernetics, 417–421. https://doi.org/10.1109/
ICSMC.2010.5641772
Wang, S., Gwizdka, J., & Chaovalitwongse, W. A. (2016).
Using Wireless EEG Signals to Assess Memory
Workload in the n-Back Task. IEEE Transactions on
Human-Machine Systems, 46(3), 424–435.
https://doi.org/10.1109/THMS.2015.2476818
Wang, Z., Hope, R. M., Wang, Z., Ji, Q., & Gray, W. D.
(2012). Cross-subject workload classification with a
hierarchical Bayes model. NeuroImage, 59(1),64–69
https://doi.org/10.1016/j.neuroimage.2011.07.094
Welke, S., Juergensohn, T., & Roetting, M. (2009). Single-
trial detection of cognitive processes for increasing
traffic safety. Proceedings of the 21st International
Technical Conference on the Enhanced Safety of
Vehicles Conference (ESV)., 1–10.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J.,
Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-
computer interfaces for communication and control.
Clinical Neurophysiology : Official Journal of the
International Federation of Clinical Neurophysiology,
113(6), 767–791. https://doi.org/ 10.1016/S1388-
2457(02)00057-3
Zander, T., Kothe, C., Jatzev, S., & Gaertner, M. (2010).
Enhancing Human-Computer Interaction with Input
from Active and Passive Brain-Computer Interfaces.
Brain-Computer Interfaces, 149–178. https://doi.org
/10.1007/978-1-84996-272-8
Zarjam, P., Epps, J., Lovell, N. H., & Chen, F. (2012).
Characterization of memory load in an arithmetic task
using non-linear analysis of EEG signals. Engineering
in Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, 3519–3522.
https://doi.org/10.1109/ EMBC.2012.6346725
Zhang, J., Wang, Y., & Li, S. (2017). Cross-subject mental
workload classification using kernel spectral regression
and transfer learning techniques. Cognition,
Technology and Work. https://doi.org/ 10.1007/s10111-
017-0425-3
Zhang, P., Wang, X., Zhang, W., & Chen, J. (2019).
Learning Spatial-Spectral-Temporal EEG Features
With Recurrent 3D Convolutional Neural Networks for
Cross-Task Mental Workload Assessment. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering. https://doi.org/10.1109/TNSRE.2018
.2884641
Zijlstra, F. R. (1993). Efficiency in work behaviour: A
design approach for modern tools. Delft University
Press, January 1993, 1–186. https://doi.org/90-6275-
918-1