resolution. However, StyleGAN2 is the worst
approach regarding the absolute number of high-
quality anonymous fingerprints generated. From the
perspective of fast generation, StyleGAN is clearly
superior. ProgressiveGAN is preferable regarding the
better anonymity. Our future work will address the
training of GAN models based on multifarious
fingerprint images from many independent sources
and conditional generation of fingerprint patterns
such as predefined locations of minutia or substrate
characteristics.
ACKNOWLEDGEMENTS
This research has been funded in part by the Deutsche
Forschungsgemeinschaft (DFG) through the research
project GENSYNTH under the number 421860227.
We thank Philip Wiegratz, Alexander Heck and Mark
Trebeljahr for participating in this work at an early
stage and establishing the feasibility of GAN-based
generation of fingerprint images.
REFERENCES
Attia, M., Attia, M. H., Iskander, J., Saleh, K., Nahavandi,
D., Abobakr, A., Hossny, M., Nahavandi, S., 2019.
Fingerprint Synthesis via Latent Space Representation,
In Proc. IEEE Int. Conf. on Systems, Man and
Cybernetics, pp. 1855-1861.
Bontrager, P., Roy, A., Togelius, J., Memon, N.D., Ross,
A., 2018. DeepMasterPrints: Generating MasterPrints
for Dictionary Attacks via Latent Variable Evolution,
In Proc. 9th IEEE Int. Conf. on Biometrics: Theory,
Applications and Systems (BTAS), pp. 1-9.
Cao, K., Jain, A.K. 2018. Fingerprint Synthesis: Evaluating
Fingerprint Search at Scale. In Proc. Int. Conf. on
Biometrics (ICB), pp. 31–38.
Cappelli, R., 2009. SFinGe, In Li, S.Z., Jain, A. (eds)
Encyclopedia of Biometrics. Springer, Boston, MA
Cappelli, R., Lumini, A., Maio, D., Maltoni, D., 2007. IEEE
Trans. on Pattern Analysis and Machine Intelligence
29(9):1489-1503.
Elham, T., Olsen, M. A., Makarov, A., Busch, C., 2013.
Towards NFIQ II Lite: Self-Organizing Maps for
Fingerprint Image Quality Assessment, NIST
Interagency Report 7973, December 13, 2013.
Fahim M. A. I., Jung, H. Y., 2020. A Lightweight GAN
Network for Large Scale Fingerprint Generation, IEEE
Access, vol. 8, pp. 92918-92928.
Galbally, J., Cappelli, R., Lumini, A., Maltoni, D., Fierrez,
J., 2008. Fake Fingertip Generation from a Minutiae
Template, In Proc. 19th Int. Conf. on Pattern
Recognition (ICPR 2008), pp. 1-4.
Galbally, J., Haraksim, R., Ferrara, P., Beslay, L., Tabassi,
E., 2019. Fingerprint Quality: Mapping NFIQ1 Classes
and NFIQ2 Values, In Proc. Int. Conf. on Biometrics
(ICB 2019), pp. 1-8.
Garris, M., Mccabe, R., 2000. NIST Special Database 27
Fingerprint Minutiae From Latent and Matching
Tenprint Images, NIST Interagency Report 6534, June
1, 2000.
Hildebrandt, M., Dittmann, J., 2015. StirTrace V2.0:
Enhanced Benchmarking and Tuning of Printed
Fingerprint Detection, IEEE Trans. on Information
Forensics and Security 10 (4):833-848.
Karras, T., Aila, T., Laine, S., Lehtinen, J., 2017.
Progressive Growing of GANs for Improved Quality,
Stability, and Variation, CoRR abs/1710.10196.
Karras, T., Laine, S., Aila, T., 2018. A Style-Based
Generator Architecture for Generative Adversarial
Networks, CoRR, vol. abs/1812.04948.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
Aila, T., 2019. Analyzing and Improving the Image
Quality of StyleGAN, CoRR, vol. abs/1912.04958.
Ko, K., 2007. User's Guide to NIST Biometric Image
Software (NBIS), NIST Interagency Report 7392,
January 21, 2007.
Minaee, S., Abdolrashidi, A., 2018. Finger-GAN:
Generating Realistic Fingerprint Images Using
Connectivity Imposed GAN. CoRR, vol. abs/
1812.10482.
Mistry, V., Engelsma, J.J., Jain, A.K., 2020. Fingerprint
Synthesis: Search with 100 Million Prints. CoRR, vol.
abs/1912.07195.
Orandi, S., Libert, J. M., Grantham, J. D., Ko, K., Wood, S.
S., Byers, F. R., Bandini, B., Harvey, S. G., Garris, M.
D., 2014. Compression Guidance for 1000 ppi Friction
Ridge Imagery, NIST Special Publication 500-289,
February 24, 2014
Ram, S., Bischof, H., Birchbauer, J., 2010. Modelling
fingerprint ridge orientation using Legendre
polynomials, Pattern Recognition 43(1):342-357.
Riazi, M.S., Chavoshian, S.M., Koushanfar, F., 2020.
SynFi: Automatic Synthetic Fingerprint Generation,
CoRR, vol. abs/ 2002.08900.
Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro,
B., 2018. High-Resolution Image Synthesis and
Semantic Manipulation with Conditional GANs, In
Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2018), pp. 8798-8807.
Wyzykowski, A., Segundo, M., Lemes, R., 2020. Level
Three Synthetic Fingerprint Generation, CoRR, vol.
abs/ 2002.03809.
Zhang, H. Xu, T., Li, H., Zhang, S., Huang, X., Wang, X.,
Metaxas, D. N., 2016. StackGAN: Text to Photo-
realistic Image Synthesis with Stacked Generative
Adversarial Networks, CoRR, vol. abs/1612.03242.
Zinoun, F., 2018. Can a Fingerprint be Modelled by a
Differential Equation?, CoRR, vol. abs/1802.05671.