Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Den-
sity estimation using real NVP. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings.
Everingham, M., Gool, L. V., Williams, C. K. I., Winn,
J. M., and Zisserman, A. (2010). The pascal visual
object classes (VOC) challenge. Int. J. Comput. Vis.,
88(2):303–338.
Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., and
Bloch, I. (2020). One versus all for deep neural
network incertitude (OVNNI) quantification. CoRR,
abs/2006.00954.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In Balcan, M. and Weinberger, K. Q.,
editors, Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 1050–
1059. JMLR.org.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and
Bengio, Y. (2014). Generative adversarial nets. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 2672–2680.
Grathwohl, W., Wang, K., Jacobsen, J., Duvenaud, D.,
Norouzi, M., and Swersky, K. (2020). Your classi-
fier is secretly an energy based model and you should
treat it like one. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.
Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017).
On calibration of modern neural networks. In Pre-
cup, D. and Teh, Y. W., editors, Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 1321–1330. PMLR.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity
mappings in deep residual networks. In Leibe, B.,
Matas, J., Sebe, N., and Welling, M., editors, Com-
puter Vision - ECCV 2016 - 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, volume 9908 of Lecture
Notes in Computer Science, pages 630–645. Springer.
Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M.,
Steinhardt, J., and Song, D. (2019a). A benchmark
for anomaly segmentation. CoRR, abs/1911.11132.
Hendrycks, D. and Gimpel, K. (2017). A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings.
Hendrycks, D., Mazeika, M., and Dietterich, T. G. (2019b).
Deep anomaly detection with outlier exposure. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pages 2261–2269. IEEE Com-
puter Society.
Kendall, A. and Gal, Y. (2017). What uncertainties do we
need in bayesian deep learning for computer vision?
In Guyon, I., von Luxburg, U., Bengio, S., Wallach,
H. M., Fergus, R., Vishwanathan, S. V. N., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 5574–5584.
Kirichenko, P., Izmailov, P., and Wilson, A. G. (2020). Why
normalizing flows fail to detect out-of-distribution
data. CoRR, abs/2006.08545.
Kre
ˇ
so, I., Krapac, J., and
ˇ
Segvi
´
c, S. (2020). Efficient ladder-
style densenets for semantic segmentation of large im-
ages. IEEE Transactions on Intelligent Transportation
Systems.
Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10
(canadian institute for advanced research).
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Bartlett, P. L., Pereira, F. C. N., Burges,
C. J. C., Bottou, L., and Weinberger, K. Q., edi-
tors, Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Informa-
tion Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 1106–1114.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles. In Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,
S. V. N., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages
6402–6413.
Lambert, J., Zhuang, L., Sener, O., Hays, J., and Koltun, V.
(2020). MSeg: A composite dataset for multi-domain
semantic segmentation. In Computer Vision and Pat-
tern Recognition (CVPR).
Lee, K., Lee, H., Lee, K., and Shin, J. (2018). Training
confidence-calibrated classifiers for detecting out-of-
distribution samples. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings.
Liang, S., Li, Y., and Srikant, R. (2018). Enhancing
the reliability of out-of-distribution image detection
in neural networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
142