ence on Biomedical Engineering Systems and Tech-
nologies, BIOSTEC 2020.
Hu, H. and Zahorian, S. A. (2010). Dimensionality Reduc-
tion Methods for Hmm Phonetic Recognition. 2010
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 4854–4857.
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environ-
ment. Computing in Science & Engineering, 9(3):90–
95.
Lara,
´
O. D., Labrador, M. A., Lara, O. D., and Labrador,
M. A. (2012). A Survey on Human Activity Recogni-
tion using Wearable Sensors. IEEE Communications
Surveys & Tutorials, 15(3):1192–1209.
Li, F., Shirahama, K., Nisar, M. A., K
¨
oping, L., and Grze-
gorzek, M. (2018). Comparison of feature learning
methods for human activity recognition using wear-
able sensors. Sensors (Switzerland), 18(2):1–22.
Liu, H. and Schultz, T. (2018). ASK: A Framework for Data
Acquisition and Activity Recognition. BIOSIGNALS
2018 - 11th International Conference on Bio-Inspired
Systems and Signal Processing, Proceedings; Part
of 11th International Joint Conference on Biomedi-
cal Engineering Systems and Technologies, BIOSTEC
2018, 4:262–268.
Liu, H. and Schultz, T. (2019). A Wearable Real-time Hu-
man Activity Recognition System using Biosensors
Integrated into a Knee Bandage. BIODEVICES 2019
- 12th International Conference on Biomedical Elec-
tronics and Devices, Proceedings; Part of 12th Inter-
national Joint Conference on Biomedical Engineering
Systems and Technologies, BIOSTEC 2019, pages 47–
55.
Mezghani, N., Fuentes, A., Gaudreault, N., Mitiche, A.,
Aissaoui, R., Hagmeister, N., and De Guise, J. A.
(2013). Identification of knee frontal plane kinematic
patterns in normal gait by principal component anal-
ysis. Journal of Mechanics in Medicine and Biology,
13(03):1350026.
Micucci, D., Mobilio, M., and Napoletano, P. (2017).
UniMiB SHAR: A Dataset for Human Activity
Recognition Using Acceleration Data from Smart-
phones.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay,
´
E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12(85):2825–2830.
Rebelo, D., Amma, C., Gamboa, H., and Schultz, T. (2013).
Human Activity Recognition for an Intelligent Knee
Orthosis. BIOSIGNALS 2013 - Proceedings of the In-
ternational Conference on Bio-Inspired Systems and
Signal Processing, pages 368–371.
Siohan, O. (1995). On the robustness of linear discrimi-
nant analysis as a preprocessing step for noisy speech
recognition. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Pro-
ceedings, 1(3):125–128.
Suto, J., Oniga, S., and Sitar, P. P. (2016). Comparison of
wrapper and filter feature selection algorithms on hu-
man activity recognition. In 2016 6th International
Conference on Computers Communications and Con-
trol (ICCCC), number Icccc, pages 124–129. IEEE.
Telaar, D., Wand, M., Gehrig, D., Putze, F., Amma, C.,
Heger, D., Vu, N. T., Erhardt, M., Schlippe, T., Janke,
M., Herff, C., and Schultz, T. (2014). BioKIT - Real-
time Decoder For Biosignal Processing. In The 15th
Annual Conference of the International Speech Com-
munication Association, Singapore, number Novem-
ber, pages 2650–2654.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nel-
son, A. R., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat,
˙
I., Feng, Y., Moore, E. W., VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,
I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vi-
jaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll,
A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A.,
Woods, C. N., Fulton, C., Masson, C., H
¨
aggstr
¨
om,
C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R.,
Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E.,
Silva, F., Lenders, F., Wilhelm, F., Young, G., Price,
G. A., Ingold, G. L., Allen, G. E., Lee, G. R., Au-
dren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber,
J. T., Slavi
ˇ
c, J., Nothman, J., Buchner, J., Kulick, J.,
Sch
¨
onberger, J. L., de Miranda Cardoso, J. V., Reimer,
J., Harrington, J., Rodr
´
ıguez, J. L. C., Nunez-Iglesias,
J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M.,
K
¨
ummerer, M., Bolingbroke, M., Tartre, M., Pak, M.,
Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk,
O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feld-
bauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S.,
Peterson, S., More, S., Pudlik, T., Oshima, T., Pin-
gel, T. J., Robitaille, T. P., Spura, T., Jones, T. R.,
Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay,
U., Halchenko, Y. O., and V
´
azquez-Baeza, Y. (2020).
SciPy 1.0: fundamental algorithms for scientific com-
puting in Python. Nature Methods, 17(3):261–272.
Weiner, J. and Schultz, T. (2018). Selecting Features for
Automatic Screening for Dementia Based on Speech.
pages 747–756.
BIOSIGNALS 2021 - 14th International Conference on Bio-inspired Systems and Signal Processing
222