Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). Random
Forests, pages 157–175. Springer US.
Delgado-Trejos, E., Quiceno-Manrique, A. F., Godino-
Llorente, J. I., Blanco-Velasco, M., and Castellanos-
Dominguez, G. (2009). Digital auscultation analysis
for heart murmur detection. Annals of Biomedical En-
gineering, 37(2):337–353.
Dornbush, S. and Turnquest, A. E. (2019). Physiology,
Heart Sounds.
Eslamizadeh, G. and Barati, R. (2017). Heart murmur de-
tection based on wavelet transformation and a syn-
ergy between artificial neural network and modified
neighbor annealing methods. Artificial Intelligence in
Medicine, 78:23–40.
Evgeniou, T. and Pontil, M. (2001). Support vector ma-
chines: Theory and applications. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 2049 LNAI(January 2001):249–257.
Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003).
KNN Model-Based Approach in Classification. In
Meersman, R., Tari, Z., and Schmidt, D. C., editors,
On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE, pages 986–996, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Kang, S., Doroshow, R., McConnaughey, J., and Shekhar,
R. (2017). Automated identification of innocent Still’s
murmur in children. IEEE Transactions on Biomedi-
cal Engineering, 64(6):1326–1334.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. (2017). LightGBM: A
Highly Efficient Gradient Boosting Decision Tree. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30, pages 3146–3154. Curran Associates, Inc.
Kleinbaum, D. G. and Klein, M. (2010). Introduction to
Logistic Regression, pages 1–39. Springer New York,
New York, NY.
Liu, C., Springer, D., Li, Q., Moody, B., Juan, R. A.,
Chorro, F. J., Castells, F., Roig, J. M., Silva, I., John-
son, A. E., Syed, Z., Schmidt, S. E., Papadaniil, C. D.,
Hadjileontiadis, L., Naseri, H., Moukadem, A., Di-
eterlen, A., Brandt, C., Tang, H., Samieinasab, M.,
Samieinasab, M. R., Sameni, R., Mark, R. G., and
Clifford, G. D. (2016). An open access database for
the evaluation of heart sound algorithms. Physiologi-
cal Measurement, 37.
Lopes, S. A. V. D. A., Guimar
˜
aes, I. C. B., Costa, S. F.
d. O., Acosta, A. X., Sandes, K. A., and Mendes, C.
M. C. (2018). Mortality for critical congenital heart
diseases and associated risk factors in newborns. A co-
hort study. Arquivos Brasileiros de Cardiologia, 111.
McLeod, S. (2019). Z-Score: Definition, Calculation and
Interpretation.
Naseri, H. and Homaeinezhad, M. R. (2013). Detection and
boundary identification of phonocardiogram sounds
using an expert frequency-energy based metric. An-
nals of Biomedical Engineering, 41(2).
Oliveira, J. H. S. (2018). Subject-driven supervised and
unsupervised Hidden Markov Models for heart sound
segmentation in real noisy environments. PhD thesis,
Faculdade de Ci
ˆ
encias da Universidade do Porto.
Oliveira, R., Martins, L., Andrade, H., Pires, A., and
Castela, E. (2013). Sopro card
´
ıaco pedi
´
atrico: es-
tudo de s
´
erie de casos. Revista Portuguesa de Cl
´
ınica
Geral, 29(6).
OPAS/OMS (2017). OPAS/OMS Brasil - Doenc¸as cardio-
vasculares. Available at https://www.paho.org/bra/
index.php?option=com content&view=article&id=
5253:doencas-cardiovasculares&Itemid=1096.
Pedrosa, J., Castro, A., and Vinhoza, T. T. (2014). Auto-
matic heart sound segmentation and murmur detec-
tion in pediatric phonocardiograms. 2014 36th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC 2014, (Decem-
ber 2015):2294–2297.
PNUD (2019). PNUD: mis
´
eria priva brasileiros
de condic¸
˜
oes b
´
asicas de vida. Available at
https://nacoesunidas.org/pnud-miseria-priva-38-
dos-brasileiros-de-condicoes-basicas-vida/.
Sh-Hussain, H., Salleh, S. H., Ariff, A. K., Alhamdani,
O., Tian-Swee, T., Noor, A. M., Oemar, H., and Yu-
soff, K. (2012). Application of multipoint auscultation
for heart sound diagnostic system (MAHDS). 2012
11th International Conference on Information Sci-
ence, Signal Processing and their Applications, ISSPA
2012.
Sh-Hussain, S., Kamarulafizam, I., Noor, A. M., Harris,
A. A., Oemar, H., and Yusoff, K. (2013). Classifi-
cation of heart sound based on multipoint auscultation
system. 2013 8th International Workshop on Systems,
Signal Processing and Their Applications, WoSSPA
2013.
Zupan, J. (1994). Introduction to artificial neural network
(ANN) methods: what they are and how to use them.
Acta Chimica Slovenica, 41(September):327–327.
BIOSIGNALS 2021 - 14th International Conference on Bio-inspired Systems and Signal Processing
234