Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet: components of
a new research resource for complex physiologic sig-
nals. circulation, 101(23):e215–e220.
Haque, A., Ali, M. H., Kiber, M. A., Hasan, M. T., et al.
(2009). Detection of small variations of ecg features
using wavelet. ARPN Journal of Engineering and Ap-
plied Sciences, 4(6):27–30.
Hart, R. G. (2003). Atrial fibrillation and stroke prevention.
New England Journal of Medicine, 349(11):1015–
1016.
Hart, R. G., Halperin, J. L., Pearce, L. A., Anderson, D. C.,
Kronmal, R. A., McBride, R., Nasco, E., Sherman,
D. G., Talbert, R. L., and Marler, J. R. (2003). Lessons
from the stroke prevention in atrial fibrillation trials.
Hinton, G. E. (1990). Connectionist learning procedures. In
Machine learning, pages 555–610. Elsevier.
Ho, T. K. (1998). The random subspace method for con-
structing decision forests. IEEE transactions on pat-
tern analysis and machine intelligence, 20(8):832–
844.
Imanishi, R., Seto, S., Ichimaru, S., Nakashima, E., Yano,
K., and Akahoshi, M. (2006). Prognostic signifi-
cance of incident complete left bundle branch block
observed over a 40-year period. The American jour-
nal of cardiology, 98(5):644–648.
Ip, J. E. and Lerman, B. B. (2018). Idiopathic malignant
premature ventricular contractions. Trends in Cardio-
vascular Medicine, 28(4):295–302.
Jaffard, S., Lashermes, B., and Abry, P. (2006). Wavelet
leaders in multifractal analysis. In Wavelet analysis
and applications, pages 201–246. Springer.
Julian, D. G., Valentine, P. A., and Miller, G. G. (1964).
Disturbances of rate, rhythm and conduction in acute
myocardial infarction: a prospective study of 100 con-
secutive unselected patients with the aid of electro-
cardiographic monitoring. The American journal of
medicine, 37(6):915–927.
Jung, Y. and Kim, H. (2017). Detection of pvc by using
a wavelet-based statistical ecg monitoring procedure.
Biomedical Signal Processing and Control, 36:176–
182.
Kones, R. and Phillips, J. (1980). Bundle branch block in
acute myocardial infarction. current concepts and in-
dications. Acta cardiologica, 35(6):469–478.
Lashermes, B., Jaffard, S., and Abry, P. (2005). Wavelet
leader based multifractal analysis. In Proceed-
ings.(ICASSP’05). IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2005., vol-
ume 4, pages iv–161. IEEE.
Leonarduzzi, R. F., Schlotthauer, G., and Torres, M. E.
(2010). Wavelet leader based multifractal analysis
of heart rate variability during myocardial ischaemia.
In 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology, pages 110–113.
IEEE.
Li, T. and Zhou, M. (2016). Ecg classification using
wavelet packet entropy and random forests. Entropy,
18(8):285.
Melgarejo-Moreno, A., Galcer
´
a-Tom
´
as, J., Garc
´
ıa-
Alberola, A., Vald
´
es-Chavarri, M., Castillo-Soria,
F. J., Mira-S
´
anchez, E., Gil-S
´
anchez, J., and Allegue-
Gallego, J. (1997). Incidence, clinical characteristics,
and prognostic significance of right bundle-branch
block in acute myocardial infarction: a study in the
thrombolytic era. Circulation, 96(4):1139–1144.
Moody, G. B. and Mark, R. G. (2001). The impact of the
mit-bih arrhythmia database. IEEE Engineering in
Medicine and Biology Magazine, 20(3):45–50.
Mullins, C. B. and Atkins, J. M. (1976). Prognoses and
management of venticular conduction blocks in acute
myocardial infarction. Modern Concepts of Cardio-
vascular Disease, 45(10):129–133.
Newby, K. H., Pisano, E., Krucoff, M. W., Green, C.,
and Natale, A. (1996). Incidence and clinical rele-
vance of the occurrence of bundle-branch block in pa-
tients treated with thrombolytic therapy. Circulation,
94(10):2424–2428.
Noble, W. S. (2006). What is a support vector machine?
Nature biotechnology, 24(12):1565–1567.
Pan, J. and Tompkins, W. J. (1985). A real-time qrs de-
tection algorithm. IEEE transactions on biomedical
engineering, (3):230–236.
Pandey, S. K. and Janghel, R. R. (2020). Automatic arrhyth-
mia recognition from electrocardiogram signals using
different feature methods with long short-term mem-
ory network model. Signal, Image and Video Process-
ing, pages 1–9.
Rizzon, P., Di Biase, M., and Baissus, C. (1974). Intraven-
tricular conduction defects in acute myocardial infarc-
tion. British Heart Journal, 36(7):660.
Shenkman, H. J., Pampati, V., Khandelwal, A. K., McK-
innon, J., Nori, D., Kaatz, S., Sandberg, K. R., and
McCullough, P. A. (2002). Congestive heart failure
and qrs duration: establishing prognosis study. Chest,
122(2):528–534.
Smisek, R., Viscor, I., Jurak, P., Halamek, J., and Plesinger,
F. (2018). Fully automatic detection of strict left
bundle branch block. Journal of Electrocardiology,
51(6):S31–S34.
Talbi, M. L. and Ravier, P. (2016). Detection of pvc in ecg
signals using fractional linear prediction. Biomedical
Signal Processing and Control, 23:42–51.
Tomek, I. (1976). Two modifications of cnn.
van Walraven, C., Hart, R. G., Singer, D. E., Koudstaal,
P. J., and Connolly, S. (2003). Oral anticoagulants
vs. aspirin for stroke prevention in patients with non-
valvular atrial fibrillation: the verdict is in. Cardiac
electrophysiology review, 7(4):374–378.
Wallmann, D., T
¨
uller, D., Kucher, N., Fuhrer, J., Arnold,
M., and Delacretaz, E. (2003). Frequent atrial prema-
ture contractions as a surrogate marker for paroxys-
mal atrial fibrillation in patients with acute ischaemic
stroke. Heart, 89(10):1247–1248.
Wallmann, D., T
¨
uller, D., Wustmann, K., Meier, P., Iseneg-
ger, J., Arnold, M., Mattle, H. P., and Delacr
´
etaz, E.
Automatic Real-time Beat-to-beat Detection of Arrhythmia Conditions
221