visual example of such an improvement on KITTI is
displayed in figure 11.
Figure 11: Contribution of adversarial learning. From left
to right, input image, prediction without adversarial learn-
ing, prediction with adversarial learning. We note that the
approach with adversarial learning is able to fill in these oc-
cluded regions more realistically (highlighted in red).
5 CONCLUSION
In this article, we have described a method able to
produce light fields, with a training from both light
field datasets and stereo datasets. The proposed
method allows us to generate high-quality light fields,
from only one single input image and for diverse im-
ages and semantics. We manage to achieve good per-
formance for producing these light fields, and are able
to use stereo data to produce light fields with a wider
variety of contents and semantics.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Man
´
e, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein gans. ICML.
Chollet, F. et al. (2015). Keras. https://keras.io.
Clark, A., Donahue, J., and K., S. (2019). Adversarial video
generation on complex datasets.
Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. CVPR.
Evain, S. and Guillemot, C. (2020). A lightweight neural
network for monocular view generation with occlu-
sion handling. PAMI.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. CVPR.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial networks.
NIPS.
Horry, Y., Anjyo, K., and Arai, K. (1997). Tour into the
picture: using a spidery mesh interface to make ani-
mation from a single image. Proceedings of the 24th
annual conference on Computer graphics and inter-
active techniques, pages 225–232.
Ivan, A., Williem, and Park, I. K. (2019). Synthesizing a
4d spatio-angular consistent light field from a single
image.
Kalantari, N., Wang, T., and Ramamoorthi, R. (2016).
Learning-based view synthesis for light field cameras.
SIGASIA.
Kingma, D. and Lei Ba, J. (2015). Adam: a method for
stochastic optimization. ICLR.
Lippmann, G. (1908). La photographie int
´
egrale. Comptes-
Rendus de l’Acad
´
emie des Sciences.
Mildenhall, B., Srinivasan, P., Ortiz-Cayon, R., Kalantari,
N., Ramamoorthi, R., Ng, R., and Kar, A. (2019). Lo-
cal light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions
on Graphics.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2020). Nerf: Repre-
senting scenes as neural radiance fields for view syn-
thesis.
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
(2018). Spectral normalization for generative adver-
sarial networks. ICPR.
Ng, R. (2006). Digital light field photography.
Park, E., Yang, J., Yumer, E., Ceylan, D., and Berg, A.
(2017). Transformation-grounded image generation
network for novel 3d view synthesis. CVPR.
Pathak, D., Kr
¨
ahenb
¨
uhl, P., Donahue, J., Darrell, T., and
Efros, A. (2016). Context encoders: Feature learning
by inpainting. CVPR.
Ruan, L., Chen, B., and Lam, M. L. (2018). Light field
synthesis from a single image using improved wasser-
stein generative adversarial network. In Jain, E. and
Kosinka, J., editors, EG 2018 - Posters. The Euro-
graphics Association.
Shih, M.-L., Su, S.-Y., Kopf, J., and Huang, J.-B. (2020).
3d photography using context-aware layered depth in-
painting. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Srinivasan, P., Wang, T., Sreelal, A., Ramamoorthi, R., and
Ng, R. (2017). Learning to synthesize a 4d rgbd light
field from a single image. ICCV.
A Neural Network with Adversarial Loss for Light Field Synthesis from a Single Image
183