Feng, D., Chen, F., & Xu, W. (2013). Efficient leave-one-
out strategy for supervised feature selection. Tsinghua
Science and Technology, 18(6), 629-635.
Fonseca, M. I. P., Pereira, T., & Caseiro, P. (2015). Death
and disability in patients with sleep apnea-a meta-
analysis. Arquivos Brasileiros de Cardiologia, 104(1),
58-66.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J.
M., Ivanov, P. C., Mark, R. G., ... & Stanley, H. E.
(2000). PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex
physiologic signals. circulation, 101(23), e215-e220.
Goshvarpour, A., Abbasi, A., & Goshvarpour, A. (2013).
Nonlinear evaluation of electroencephalogram signals
in different sleep stages in apnea episodes.
International journal of intelligent systems and
applications, 5(10), 68.
Hassan, A. R., & Bhuiyan, M. I. H. (2017). An automated
method for sleep staging from EEG signals using
normal inverse Gaussian parameters and adaptive
boosting. Neurocomputing, 219, 76-87.
Koley, B., & Dey, D. (2012). An ensemble system for
automatic sleep stage classification using single
channel EEG signal. Computers in biology and
medicine, 42(12), 1186-1195.
Kagawa, M., Tojima, H., & Matsui, T. (2016). Non-contact
diagnostic system for sleep apnea–hypopnea syndrome
based on amplitude and phase analysis of thoracic and
abdominal Doppler radars. Medical & biological
engineering & computing, 54(5), 789-798.
Kumari, C. U., Kora, P., Meenakshi, K., Swaraja, K.,
Padma, T., Panigrahy, A. K., & Vignesh, N. A. (2020).
Feature Extraction and Detection of Obstructive Sleep
Apnea from Raw EEG Signal. In International
Conference on Innovative Computing and
Communications (pp. 425-433). Springer, Singapore.
Lee, P. L., Huang, Y. H., Lin, P. C., Chiao, Y. A., Hou, J.
W., Liu, H. W., ... & Chiueh, T. D. (2019). Automatic
Sleep Staging in Patients With Obstructive Sleep Apnea
Using Single-Channel Frontal EEG. Journal of Clinical
Sleep Medicine, 15(10), 1411-1420.
Leppänen, T., Kulkas, A., Duce, B., Mervaala, E., &
Töyräs, J. (2017). Severity of individual obstruction
events is gender dependent in sleep apnea. Sleep and
Breathing, 21(2), 397-404.
Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C.,
Miro-Martinez, P., & Oltra-Crespo, S. (2011).
Comparative study of approximate entropy and sample
entropy robustness to spikes. Artificial intelligence in
medicine, 53(2), 97-106.
Penzel, T., Schöbel, C., & Fietze, I. (2018). New
technology to assess sleep apnea: wearables,
smartphones, and accessories. F1000Research, 7.
Richman, J. S., & Moorman, J. R. (2000). Physiological
time-series analysis using approximate entropy and
sample entropy.
American Journal of Physiology-Heart
and Circulatory Physiology, 278(6), H2039-H2049.
Senaratna, C. V., Perret, J. L., Lodge, C. J., Lowe, A. J.,
Campbell, B. E., Matheson, M. C., ... & Dharmage, S.
C. (2017). Prevalence of obstructive sleep apnea in the
general population: a systematic review. Sleep medicine
reviews, 34, 70-81.
Supratak, A., Dong, H., Wu, C., & Guo, Y. (2017).
DeepSleepNet: A model for automatic sleep stage
scoring based on raw single-channel EEG. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 25(11), 1998-2008.
Tan, H. L., Gozal, D., Ramirez, H. M., Bandla, H. P., &
Kheirandish-Gozal, L. (2014). Overnight
polysomnography versus respiratory polygraphy in the
diagnosis of pediatric obstructive sleep apnea. Sleep,
37(2), 255-260.
Vimala, V., Ramar, K., & Ettappan, M. (2019). An
intelligent sleep apnea classification system based on
EEG signals. Journal of medical systems, 43(2), 36.
Xie, B., & Minn, H. (2012). Real-time sleep apnea
detection by classifier combination. IEEE Transactions
on information technology in biomedicine, 16(3), 469-
477.
Zhang, J., Wu, Y., Bai, J., & Chen, F. (2016). Automatic
sleep stage classification based on sparse deep belief net
and combination of multiple classifiers. Transactions of
the Institute of Measurement and Control, 38(4), 435-
451.
Zhou, J., Wu, X. M., & Zeng, W. J. (2015). Automatic
detection of sleep apnea based on EEG detrended
fluctuation analysis and support vector machine.
Journal of clinical monitoring and computing, 29(6),
767-772.
BIODEVICES 2021 - 14th International Conference on Biomedical Electronics and Devices