Forrest, J., Vigerske, S., Santos, H. G., Ralphs, T., Hafer,
L., Kristjansson, B., jpfasano, Straver, E., Lubin, M.,
rlougee, jpgoncal1, h-i gassmann, and Saltzman, M.
(2020b). coin-or/cbc.
Fourer, R., Gay, D. M., and Kernighan, B. W. (2003).
AMPL. A modeling language for mathematical pro-
gramming. Thomson.
Guenin, B., K
¨
onemann, J., and Tuncel, L. (2014). A gentle
introduction to optimization. Cambridge University
Press.
Hager, W. W. and Zhang, H. (2006). Algorithm 851:
CG DESCENT, a conjugate gradient method with
guaranteed descent. ACM Transactions on Mathemat-
ical Software (TOMS), 32(1):113–137.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing in science & engineering, 9(3):90–
95. Publisher: IEEE Computer Society.
Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE TVCG, 17(12):2563–2571.
Jolliffe, I. T. (1986). Principal component analysis and fac-
tor analysis. In Principal Component Analysis, pages
115–128. Springer.
Kantorovich, L. V. (1960). Mathematical methods of orga-
nizing and planning production. Management science,
6(4):366–422.
Liu, D. C. and Nocedal, J. (1989). On the limited memory
BFGS method for large scale optimization. Mathe-
matical programming, 45(1-3):503–528.
Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., and
Pascucci, V. (2015). Visualizing high-dimensional
data: Advances in the past decade. IEEE TVCG,
23(3):1249–1268.
Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-SNE. JMLR, 9:2579–2605.
Makhorin, A. (2008). GLPK: GNU Linear Programming
Kit).
Martins, R., Coimbra, D., Minghim, R., and Telea, A.
(2014). Visual analysis of dimensionality reduction
quality for parameterized projections. Computers &
Graphics, 41:26–42. Publisher: Elsevier.
McInnes, L. and Healy, J. (2018). UMAP: Uniform man-
ifold approximation and projection for dimension re-
duction. arXiv:1802.03426v1 [stat.ML].
Mogensen, P. K. and Riseth, A. N. (2018). Optim: A math-
ematical optimization package for Julia. Journal of
Open Source Software, 3(24):615.
Nelder, J. A. and Mead, R. (1965). A simplex method
for function minimization. The computer journal,
7(4):308–313.
Nonato, L. and Aupetit, M. (2018). Multidimensional
projection for visual analytics: Linking techniques
with distortions, tasks, and layout enrichment. IEEE
TVCG.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
TVCG, 14(3):564–575.
Rastrigin, L. A. (1974). Systems of extremal control.
Nauka.
Rodrigues, F., Espadoto, M., Hirata, R., and Telea, A. C.
(2019). Constructing and visualizing high-quality
classifier decision boundary maps. Information,
10(9):280.
Rosenbrock, H. (1960). An automatic method for finding
the greatest or least value of a function. The Computer
Journal, 3(3):175–184.
Roweis, S. T. and Saul, L. L. K. (2000). Nonlinear di-
mensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326. Publisher: American
Association for the Advancement of Science.
Silva, R. d., Rauber, P., Martins, R., Minghim, R., and
Telea, A. C. (2015). Attribute-based visual explana-
tion of multidimensional projections. In Proc. Eu-
roVA.
Styblinski, M. and Tang, T.-S. (1990). Experiments in non-
convex optimization: stochastic approximation with
function smoothing and simulated annealing. Neural
Networks, 3(4):467–483.
Tenenbaum, J. B., Silva, V. D., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323.
Publisher: American Association for the Advance-
ment of Science.
Torgerson, W. S. (1958). Theory and Methods of Scaling.
Wiley.
van Driel, D., Zhai, X., Tian, Z., and Telea, A. (2020).
Enhanced attribute-based explanations of multidimen-
sional projections. In Proc. EuroVA. Eurographics.
van Wijk, J. J. and van Liere, R. (1993). Hyperslice. In
Proc. Visualization, pages 119–125. IEEE.
W
¨
achter, A. and Biegler, L. T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1):25–57.
Wicklin, R. (2018). Visualize the feasi-
ble region for a constrained optimization.
https://blogs.sas.com/content/iml/2018/11/07/
visualize-feasible-region-constrained-optimization.
html.
IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications
132