ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for
their valuable comments and suggestions.
REFERENCES
Asafi, S., Goren, A., and Cohen-Or, D. (2013). Weak
convex decomposition by lines-of-sight. Computer
graphics forum, 32(5):23–31.
Benk
´
o, P. and V
´
arady, T. (2004). Segmentation methods
for smooth point regions of conventional engineering
objects. Computer-Aided Design, 36(6):511–523.
Chen, Z., Tagliasacchi, A., and Zhang, H. (2019). Bsp-
net: Generating compact meshes via binary space par-
titioning. arXiv preprint arXiv:1911.06971.
Coumans, E. and Bai, Y. (2016–2019). Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org.
Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G.,
and Tagliasacchi, A. (2019). Cvxnets: Learnable con-
vex decomposition. arXiv preprint arXiv:1909.05736.
Du, T., Inala, J. P., Pu, Y., Spielberg, A., Schulz, A., Rus,
D., Solar-Lezama, A., and Matusik, W. (2018). In-
versecsg: Automatic conversion of 3d models to csg
trees. ACM Trans. Graph., 37(6):1–16.
Edelsbrunner, H. and M
¨
ucke, E. P. (1994). Three-
dimensional alpha shapes. Transactions on Graphics,
13(1):43–72.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, pages 226–
231. AAAI Press.
Fayolle, P.-A. and Pasko, A. (2016). An evolutionary ap-
proach to the extraction of object construction trees
from 3d point clouds. Computer-Aided Design, 74:1–
17.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Friedrich, M., Fayolle, P.-A., Gabor, T., and Linnhoff-
Popien, C. (2019). Optimizing evolutionary CSG tree
extraction. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO ’19, page
1183–1191.
Friedrich, M., Illium, S., Fayolle, P.-A., and Linnhoff-
Popien, C. (2020). A hybrid approach for segment-
ing and fitting solid primitives to 3d point clouds.
In Proceedings of the 15th International Confer-
ence on Computer Graphics Theory and Applications
(GRAPP), volume 1, pages 38–48.
Fukuda, K. and Prodon, A. (1996). Double description
method revisited. In Combinatorics and Computer
Science, pages 91–111. Springer Berlin Heidelberg.
Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988).
A fast procedure for computing the distance between
complex objects in three-dimensional space. IEEE
Journal on Robotics and Automation, 4(2):193–203.
Kaick, O. V., Fish, N., Kleiman, Y., Asafi, S., and Cohen-
Or, D. (2014). Shape segmentation by approximate
convexity analysis. ACM Transactions on Graphics
(TOG), 34(1):1–11.
Kaiser, A., Zepeda, J. A. Y., and Boubekeur, T. (2019). A
survey of simple geometric primitives detection meth-
ods for captured 3d data. Computer Graphics Forum,
38(1):167–196.
Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson
surface reconstruction. In Proceedings of the fourth
Eurographics symposium on Geometry processing,
volume 7 of SGP ’06, page 61–70. Eurographics As-
sociation.
Lafarge, F. and Alliez, P. (2013). Surface reconstruction
through point set structuring. Computer Graphics Fo-
rum, 32(2pt2):225–234.
Li, M., Wonka, P., and Nan, L. (2016). Manhattan-world ur-
ban reconstruction from point clouds. In ECCV, pages
54–69.
Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D.,
and Mitra, N. J. (2011). Globfit: Consistently fitting
primitives by discovering global relations. ACM trans-
actions on graphics (TOG), 30(4):1–12.
Monszpart, A., Mellado, N., Brostow, G. J., and Mitra, N. J.
(2015). RAPter: Rebuilding man-made scenes with
regular arrangements of planes. ACM Trans. Graph.,
34(4):1–12.
Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., Gool,
L., and Purgathofer, W. (2013). A survey of urban re-
construction. Comput. Graph. Forum, 32(6):146–177.
Nan, L. and Wonka, P. (2017). Polyfit: Polygonal surface
reconstruction from point clouds. In 2017 IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 2372–2380.
Oesau, S., Lafarge, F., and Alliez, P. (2016). Planar Shape
Detection and Regularization in Tandem. Computer
Graphics Forum, 35(1):203–215.
Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient
ransac for point-cloud shape detection. Computer
graphics forum, 26(2):214–226.
Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Con-
sistent mesh partitioning and skeletonisation using
the shape diameter function. The Visual Computer,
24(4):249–259.
Tulsiani, S., Su, H., Guibas, L. J., Efros, A. A., and Malik,
J. (2017). Learning shape abstractions by assembling
volumetric primitives. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 2635–2643.
V
´
arady, T., Benko, P., and Kos, G. (1998). Reverse en-
gineering regular objects: simple segmentation and
surface fitting procedures. Int. J. of Shape Modeling,
3(4):127–141.
von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and Computing, 17:395–416.
Xiao, J. and Furukawa, Y. (2014). Reconstructing the
world’s museums. International Journal of Computer
Vision, 110(3):243–258.
GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications
84