Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: To-
wards Real-Time Object Detection with Region Pro-
posal Networks. IEEE Trans. Pattern Anal. Mach. In-
tell. 39(6), 1137–1149 (2017)
Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y.,
Xue, X.: Arbitrary-Oriented Scene Text Detection via
Rotation Proposals. IEEE Trans. Multimedia 20(11),
3111–3122 (2018)
Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: TextBoxes:
A Fast Text Detector with a Single Deep Neural Net-
work. In Proc. AAAI, 4161–4167(2017)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C., Berg, A.: SSD: Single Shot MultiBox Detector. In
Proc.ECCV, 21–37(2016)
Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W.,
Liang, J.: EAST: An Efficient and Accurate Scene
Text Detector. In Proc.CVPR, 2642–2651(2017)
Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao,
”Detecting text in natural image with connectionist
text proposal network,” in ECCV, 56–72(2016)
Alex Graves and J
¨
urgen Schmidhuber, ”Framewise
phoneme classification with bidirectional lstm and
other neural network architectures”, Neural Networks,
vol.18, no.5-6, pp.602–610 (2005)
Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 3431–3440(2015)
Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao,
Wenyu Liu, and Xiang Bai. Multi-oriented text de-
tection with fully convolutional networks. In CVPR,
4159–4167(2016)
Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Pix-
ellink: Detecting scene text via instance segmentation.
In AAAI, 6773–6780(2018)
Shangbang Long, Jiaqiang Ruan, Wenjie Zhang, Xin He,
Wenhao Wu, and Cong Yao. Textsnake: A flexible
representation for detecting text of arbitrary shapes.
In ECCV,19–35(2018)
Xiang Li, Wenhai Wang, Wenbo Hou, Ruo-Ze Liu, Tong
Lu, and Jian Yang, ”Shape robust text detection
with progressive scale expansion network,” In CVPR,
9336–9345(2019).
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B.,
Belongie, S.: Feature pyramid networks for object de-
tection. In: The IEEE Conference on Computer Vision
and Pattern Recognition. In CVPR, 936–944(2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolu-
tional Networks for Biomedical Image Segmentation.
Springer International Publishing. In MICCAI, 234–
24 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition. In CVPR, 770–778(2016)
Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: De-
convolutional networks. In CVPR, 2528–2535 (2010)
Trevor Hastie and Werner Stuetzle, ”Principal curves”,
Journal of the American Statistical Association, vol.
84, no. 406, pp. 502–516(1989)
Yuliang Liu, Lianwen Jin, Shuaitao Zhang, and Sheng
Zhang, ”Detecting curve text in the wild: New dataset
and new solution”, arXiv:1712.02170, (2017)
Chee Kheng Ch’ng and Chee Seng Chan, ”Total-text: A
comprehensive dataset for scene text detection and
recognition”, in ICDAR, 935–942 (2017)
Karatzas, D., Gomez, L., Nicolaou, A., Ghosh, S., Bag-
danov, A., Iwamura, M., Matas, J., Neumann, L.,
Chandrasekhar, V., Lu, S., Shafait, F., Uchida, S., Val-
veny, E.: ICDAR 2015 competition on robust reading.
In Proc.ICDAR, 1156–1160(2015)
Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts
of arbitrary orientations in natural images. In CVPR,
1083–1090(2012)
Yuliang Liu, Lianwen Jin, Shuaitao Zhang, and Sheng
Zhang, ”Detecting curve text in the wild: New dataset
and new solution”, arXiv:1712.02170, (2017)
Yixing Zhu and Jun Du, ”Sliding line point regression for
shape robust scene text detection”, arXiv:1801.09969,
(2018)
Zhuotao Tian, Michelle Shu, Pengyuan Lyu, Ruiyu Li,
Chao Zhou, Xiaoyong Shen, Jiaya Jia:Learning
Shape-Aware Embedding for Scene Text Detection. In
CVPR, 4234–4243(2019)
Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and
Xiang Bai, ”Mask textspotter: An end-to-end train-
able neural network for spotting text with arbitrary
shapes”,in ECCV,71–88(2018)
Yao, C., Bai, X., Sang, N., Zhou, X., Zhou, S., Cao, Z.:
Scene Text Detection via Holistic, Multi-Channel Pre-
diction. CoRR abs/1606.09002 (2016)
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
552