Camacho, J., Parrilla, M., and Fritsch, C. (2009). Phase
coherence imaging. IEEE Trans. UFFC, 56:958–974.
Capon, J. (1969). High-resolution frequency-wavenumber
spectrum analysis. In Proc. IEEE, volume 57, pages
1408–1418.
Cui, S. and Liu, D. C. (2011). Noise reduction for ul-
trasonic elastography using transmit-side frequency
compounding: a preliminary study. IEEE Trans.
UFFC, 58(3):509–516.
Huang, H., Yang, J., Huang, H., Song, Y., and Gui, G.
(2018). Deep learning for super-resolution channel es-
timation and doa estimation based massive mimo sys-
tem. IEEE Trans. Vehicular Technology, 67(9):8549–
8560.
Jeon, W., Jeong, W., Son, K., and Yang, H. (2018). Speckle
noise reduction for digital holographic images using
multi-scale convolutional neural networks. Optics let-
ters, 43(17):4240–4243.
Kozai, R., Tagawa, N., Yoshizawa, M., and Irie, T.
(2020). Optimization of frequency and plane-wave
compounding by minimum variance beamforming. In
IEEE Int. Ultrasonics. Symp.
Leo, M., Piccolo, R., Distante, C., Memmolo, P., Paturzo,
M., and Ferraro, P. (2014). Multilevel bidimensional
empirical mode decomposition: a new speckle reduc-
tion method in digital holography. Optical Engineer-
ing, 53(11):112314–1–10.
Li, P. C. and Li, M. L. (2003). Adaptive imaging using
the generalized coherence factor. IEEE Trans. UFFC,
50:128–142.
Luijten, B., Cohen, R., de Bruijn, F. J., Schmeitz, H. A. W.,
Mischi, M., Eldar, Y. C., and van Israel, R. J. G.
(2019). Deep learning for fast adaptive beamform-
ing. In IEEE Int. Conf. Acoust. Speech and Signal
Process., pages 1333–1337.
Magnin, P. A., von Ramm, O. T., and Thurstone, F. L.
(1982). Frequency compounding for speckle contrast
reduction in phased array images. Ultrasonic imaging,
4(3):267–281.
Matrone, G., Savoia, S. A., Caliano, G., and Magenes, G.
(2015). The delay multiply and sum beamforming al-
gorithm in ultrasound b-mode medical imaging. IEEE
Trans. Med. Imag., 34(4):940–949.
Mehdizadeh, S., Austeng, A., Johansen, T. F., and Holm, S.
(2012). Eigenspace based minimum variance beam-
forming applied to ultrasound imaging of acoustically
hard tissues. IEEE Trans. Med. Imag., 31(10):1912–
1921.
Mesurolle, B., Bining, H. J., Khoury, M. E., Barhdadi, A.,
and Kao, E. (2006). Contribution of tissue harmonic
imaging and frequency compound imaging in inter-
ventional breast sonography. Journal of ultrasound in
medicine, 25(7):845–855.
Montaldo, G., Tanter, M., Bercoff, J., Benech, N., and
Fink, M. (2009). Coherent plane-wave compounding
for very high frame rate ultrasonography and transient
elastography. IEEE Trans. UFFC, 56(3):489–506.
Nguyen, C. H., Tagawa, N., Yoshizawa, M., and Irie, T.
(2020). Performance improvement of ultrasonic range
super-resolution based on phase rotation by dealing
with echo distortion. Proc. of Meeting on Acoust.
(POMA), 38:055009–1–13.
Nguyen, N. Q. and Prager, R. W. (2018). A spatial co-
herence approach to minimum variance beamforming
for plane-wave compounding. IEEE Trans. UFFC,
65(4):522–534.
Ouyang, W., Aristov, A., Lelek, M., Hao, X., and Zimmer,
C. (2018). Deep learning massively accelerates super-
resolution localization microscopy. Nature Biotech-
nology, 36:460–468.
Shahdoosti, H.-R. and Rahemi, Z. (2019). Edge-preserving
image denoising using a deep convolutional neural
network. Signal Processing, 159:20–32.
Synnevag, J. F., Austeng, A., and Holm, S. (2007). Adaptive
beamforming applied to medical ultrasound imaging.
IEEE Trans. UFFC, 54(8):1606–1613.
Tagawa, N. and Zhu, J. (2018). Super-resolution ultrasound
imaging based on the phase of the carrier wave with-
out deterioration by grating lobes. In Int. Conf. Pattern
Recog., pages 2791–2796.
Thomenius, K. E. (1996). Evolution of ultrasound beam-
formers. In IEEE Int. Ultrason. Symp., volume 2,
pages 1615–1622.
Vignom, F. and Burcher, M. R. (2008). Capon beamforming
in medical ultrasound imaging with focused beams.
IEEE Trans. UFFC, 55:619–628.
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., and
Liao, Q. (2019). Deep learning for single image super-
resolution: A brief review. IEEE Trans. Multimedia,
21(12):3106–3121.
Zhu, J. and Tagawa, N. (2019a). High resolution ultrasonic
imaging based on frequency sweep in both of trans-
ducer element domain and imaging line domain. Jpn.
J. Appl. Phys., 58:SGGE03–1–7.
Zhu, J. and Tagawa, N. (2019b). Improvement of perfor-
mance degradation in synthetic aperture extension of
enhanced axial resolution ultrasound imaging based
on frequency sweep. Sensors, 19:2414–1–18.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
430