REFERENCES
Biber, P. and Duckett, T. (2009). Experimental analysis of
sample-based maps for long-term slam. The Interna-
tional Journal of Robotics Research, 28(1):20–33.
Bodenhagen, L., Suvei, S.-D., Juel, W. K., Brander, E., and
Kr
¨
uger, N. (2019). Robot technology for future wel-
fare: meeting upcoming societal challenges–an out-
look with offset in the development in scandinavia.
Health and Technology, 9(3):197–218.
Bowman, S. L., Atanasov, N., Daniilidis, K., and Pappas,
G. J. (2017). Probabilistic data association for seman-
tic slam. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 1722–1729.
IEEE.
Cesta, A., Cortellessa, G., Orlandini, A., and Tiberio,
L. (2016). Long-term evaluation of a telepresence
robot for the elderly: methodology and ecological
case study. International Journal of Social Robotics,
8(3):421–441.
Da
ˇ
si
´
c, P., Da
ˇ
si
´
c, J., and Crvenkovi
´
c, B. (2017). Improving
patient safety in hospitals through usage of cloud sup-
ported video surveillance. Open access Macedonian
journal of medical sciences, 5(2):101.
Ferrari, M., Harrison, B., Rawashdeh, O., Hammond, R.,
Avery, Y., Rawashdeh, M., Sadeh, W., and Maddens,
M. (2012). Clinical feasibility trial of a motion de-
tection system for fall prevention in hospitalized older
adult patients. Geriatric Nursing, 33(3):177–183.
Gonzalez-Jimenez, J., Galindo, C., and Gutierrez-
Castaneda, C. (2013). Evaluation of a telepresence
robot for the elderly: a spanish experience. In Inter-
national Work-Conference on the Interplay Between
Natural and Artificial Computation, pages 141–150.
Springer.
Lee, H., Kim, Y., and Bianchi, A. (2017). A survey on
medical robotic telepresence design from the perspec-
tive of medical staff. Archives of Design Research,
30(1):61–71.
Liao, S., Jain, A. K., and Li, S. Z. (2016). A Fast and Ac-
curate Unconstrained Face Detector. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
38(2):211–223.
Liu, H., Jie, Z., Jayashree, K., Qi, M., Jiang, J., Yan, S., and
Feng, J. (2017). Video-based person re-identification
with accumulative motion context. IEEE transac-
tions on circuits and systems for video technology,
28(10):2788–2802.
Lukac, T., Pucik, J., and Chrenko, L. (2014). Contactless
recognition of respiration phases using web camera.
In Radioelektronika (RADIOELEKTRONIKA), 2014
24th International Conference, pages 1–4. IEEE.
Meinel, L., Wiede, C., Findeisen, M., Apitzsch, A., and
Hirtz, G. (2014). Virtual perspective views for real-
time people detection using an omnidirectional cam-
era. In Imaging Systems and Techniques (IST), 2014
IEEE International Conference on, pages 312–315.
IEEE.
Niemel
¨
a, M., Van Aerschot, L., Tammela, A., Aaltonen, I.,
and Lammi, H. (2019). Towards ethical guidelines of
using telepresence robots in residential care. Interna-
tional Journal of Social Robotics, pages 1–9.
Poh, M.-Z., McDuff, D. J., and Picard, R. W. (2010). Non-
contact, automated cardiac pulse measurements using
video imaging and blind source separation. Optics ex-
press, 18(10):10762–10774.
Pomerleau, F., Kr
¨
usi, P., Colas, F., Furgale, P., and Siegwart,
R. (2014). Long-term 3d map maintenance in dynamic
environments. In 2014 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
3712–3719. IEEE.
Rantz, M. J., Banerjee, T. S., Cattoor, E., Scott, S. D.,
Skubic, M., and Popescu, M. (2013). Automated
fall detection with quality improvement rewind to re-
duce falls in hospital rooms. Journal of gerontological
nursing, 40(1):13–17.
Scheck, T., Seidel, R., and Hirtz, G. (2020). Learning from
theodore: A synthetic omnidirectional top-view in-
door dataset for deep transfer learning. In The IEEE
Winter Conference on Applications of Computer Vi-
sion, pages 943–952.
Seidel, R., Scheck, T., Grassi, A. C. P., Seuffert, J. B.,
Apitzsch, A., Yu, J., Nestler, N., Heinz, D., Lehmann,
L., Goy, A., and Hirtz, G. (2020). Contactless inter-
active fall detection and sleep quality estimation for
supporting elderly with incipient dementia. In BMT
2020 Conference (in-press). VDE.
Shi, J. and Tomasi, C. (1993). Good Features to Track.
Technical report, Cornell University, Ithaca, NY,
USA.
Tomasi, C. and Kanade, T. (1991). Detection and Tracking
of Point Features. Technical report, Carnegie Mellon
University.
Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008).
Remote plethysmographic imaging using ambient
light. Optics express, 16(26):21434–21445.
Wiede, C., Grundmann, K., Wuerich, C., Rademacher, R.,
Heidemann, B., and Grabmaier, A. (2020). Fast triage
of covid-19 patients in hospitals by means of remote
respiration rate determination. In BMT 2020 Confer-
ence (in-press). VDE.
Wiede, C., Richter, J., and Hirtz, G. (2019). Contact-less vi-
tal parameter determination: An e-health solution for
elderly care. In VISIGRAPP (5: VISAPP), pages 908–
915.
Wiede, C., Richter, J., Manuel, M., and Hirtz, G. (2017).
Remote respiration rate determination in video data-
vital parameter extraction based on optical flow and
principal component analysis. In International Con-
ference on Computer Vision Theory and Applications,
volume 5, pages 326–333. SCITEPRESS.
Zhu, X. and Ramanan, D. (2012). Face detection, pose esti-
mation, and landmark localization in the wild. In Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
2879–2886.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
700