ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Hope, T., Resheff, Y. S., and Lieder, I. (2017). Learning
tensorflow: A guide to building deep learning systems.
” O’Reilly Media, Inc.”.
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. (2016). Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<0.5mb model size. arXiv:1602.07360.
Jenkins, D. and Vasigh, B. (2013). The economic impact of
unmanned aircraft systems integration in the United
States. Association for Unmanned Vehicle Systems
International (AUVSI).
Junior, J. D. D., Backes, A. R., and Escarpinati, M. C.
(2019). Detection of control points for uav-
multispectral sensed data registration through the
combining of feature descriptors.
Junior, J. D. D., Backes, A. R., Escarpinati, M. C., Silva, L.
H. F. P., Costa, B. C. S., and Avelar, M. H. F. (2020).
Assessing the adequability of fft-based methods on
registration of uav-multispectral images.
Kataoka, T., Kaneko, T., Okamoto, H., and Hata, S. (2003).
Crop growth estimation system using machine vision.
In Proceedings 2003 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics (AIM
2003), volume 2, pages b1079–b1083. IEEE.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Proceedings of the 25th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, pages 1097–1105, USA.
Curran Associates Inc.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nature, 521(7553):436–444.
LeCun, Y. L., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of IEEE, 86(11):2278–2324.
Malthus, T. R. (1872). An Essay on the Principle of Popu-
lation..
Marcos, A. P., Rodovalho, N. L. S., and Backes, A. R.
(2019a). Coffee leaf rust detection using convolu-
tional neural network. In 2019 XV Workshop de Vis
˜
ao
Computacional (WVC), pages 38–42. IEEE.
Marcos, A. P., Rodovalho, N. L. S., and Backes, A. R.
(2019b). Coffee leaf rust detection using genetic algo-
rithm. In 2019 XV Workshop de Vis
˜
ao Computacional
(WVC), pages 16–20. IEEE.
McBratney, A., Whelan, B., Ancev, T., and Bouma, J.
(2005). Future directions of precision agriculture.
Precision agriculture, 6(1):7–23.
Milella, A., Reina, G., and Nielsen, M. (2019). A multi-
sensor robotic platform for ground mapping and esti-
mation beyond the visible spectrum. Precision agri-
culture, 20(2):423–444.
Ponti, M. A., Ribeiro, L. S. F., Nazar
´
e, T. S., Bui, T.,
and Collomosse, J. (2017). Everything you wanted
to know about deep learning for computer vision but
were afraid to ask. In SIBGRAPI Tutorials, pages 17–
41. IEEE Computer Society.
Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed,
S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N.,
Carter, A. H., Pumphrey, M. O., Knowles, N. R., et al.
(2015). Low-altitude, high-resolution aerial imaging
systems for row and field crop phenotyping: A review.
European Journal of Agronomy, 70:112–123.
Scherer, D., M
¨
uller, A. C., and Behnke, S. (2010). Eval-
uation of pooling operations in convolutional archi-
tectures for object recognition. In Artificial Neural
Networks - ICANN 2010 - 20th International Confer-
ence, Thessaloniki, Greece, September 15-18, 2010,
Proceedings, Part III, volume 6354 of Lecture Notes
in Computer Science, pages 92–101. Springer.
Shekhar, R. and Zagrodsky, V. (2002). Mutual information-
based rigid and nonrigid registration of ultrasound
volumes. IEEE transactions on medical imaging,
21(1):9–22.
Silva, L. H. F. P., Dias J
´
unior, J. D., Santos, J. F. B., Mari,
J. F., Escarpinati, M. C., and Backes, A. R. (2020).
Classification of uavs’ distorted images using convo-
lutional neural networks. In Workshop de Vis
˜
ao Com-
putacional, pages 98–108, Uberl
ˆ
andia, Brazil.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2818–2826.
Uchida, S. (2013). Image processing and recognition for
biological images. In Development, growth & differ-
entiation.
Walimbe, V. and Shekhar, R. (2006). Automatic elastic im-
age registration by interpolation of 3d rotations and
translations from discrete rigid-body transformations.
Medical Image Analysis, 10(6):899–914.
Wang, Y. and Staib, L. H. (1998). Elastic model based non-
rigid registration incorporating statistical shape infor-
mation. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention,
pages 1162–1173. Springer.
Yasir, R., Eramian, M., Stavness, I., Shirtliffe, S., and
Duddu, H. (2018). Data-driven multispectral image
registration. In 2018 15th Conference on Computer
and Robot Vision (CRV), pages 230–237. IEEE.
Zhu, R., Yu, D., Ji, S., and Lu, M. (2019). Matching
rgb and infrared remote sensing images with densely-
connected convolutional neural networks. Remote
Sensing, 11(23):2836.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
454