Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Im-
age style transfer using convolutional neural networks.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Juurlink, B., Alvarez-Mesa, M., Chi, C. C., Azevedo, A.,
Meenderinck, C., and Ramirez, A. (2012). Under-
standing the application: An overview of the h.264
standard. Scalable Parallel Programming Applied to
H.264/AVC Decoding, pages 5–15.
Kim, J., Lee, J. K., and Lee, K. M. (2016). Accurate image
super-resolution using very deep convolutional net-
works. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In the 3rd International Con-
ference for Learning Representations.
Ledig, C., Theis, L., Husz
´
ar, F., Caballero, J., Cunning-
ham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J.,
Wang, Z., and Shi, W. (2017). Photo-realistic single
image super-resolution using a generative adversarial
network. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Li, Y., Guo, F., Tan, R. T., and Brown, M. S. (2014). A
contrast enhancement framework with jpeg artifacts
suppression. In European Conference on Computer
Vision (ECCV).
Liu, H., Xiong, R., Zhang, J., and Gao, W. (2015). Im-
age denoising via adaptive soft-thresholding based on
nonlocal samples. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Martin, D. R., Fowlkes, C., Tal, D., and Malik, J. (2001). A
database of human segmented natural images and its
application to evaluating segmentation algorithms and
measuring ecological statistics. In IEEE International
Conference on Computer Vision (ICCV).
Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. In arXiv preprint arXiv:1411.1784.
Nosratinia, A. (1999). Embedded post-processing for en-
hancement of compressed images. In Proceedings
DCC’99 Data Compression Conference.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in Py-
Torch. In NeurIPS Autodiff Workshop.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Sheikh, H. R., Wang, Z., Cormack, L., , and Bovik, A. C.
(2014). Live image quality assessment database re-
lease 2.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions (ICLR).
Svoboda, P., Hradis, M., Ba
ˇ
rina, D., and Zemc
´
ık, P. (2016).
Compression artifacts removal using convolutional
neural networks. Journal of WSCG, 24:63–72.
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004).
Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image
Processing, 13:600–612.
Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra,
A. (2003). Overview of the h.264/avc video coding
standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13:560–576.
Yang, S., Kittitornkun, S., Hu, Y.-H., Nguyen, T., and Tull,
D. (2000). Blocking artifact free inverse discrete co-
sine transform. In Proceedings 2000 International
Conference on Image Processing.
Yu, K., Dong, C., Deng, Y., Loy, C. C., and Tang, X. (2015).
Compression artifacts reduction by a deep convolu-
tional network. In IEEE International Conference on
Computer Vision (ICCV).
Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L.
(2017). Beyond a gaussian denoiser: Residual learn-
ing of deep cnn for image denoising. IEEE Transac-
tions on Image Processing, 26:3142–3155.
Zhang, X., Xiong, R., Fan, X., and Gao, W. (2013).
Compression artifact reduction by overlapped-block
transform coefficient estimation with block similarity.
IEEE Transactions on Image Processing, 22:4613–
4626.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
464