SeVA platform implementation in a hospital setting.
We are also investigating innovative methods to
quantify cognition and emotion with the goal to
recommend non-pharmacological interventions to
reduce stress during the hospital stay. We will
evaluate the system with patient and nurse surveys as
well as the alarm statistical metrics including True
Positive Rate, False Positive Rate, and False Negative
Rate.
ACKNOWLEDGEMENTS
This work is partly supported by the Air Force Office
of Scientific Research (AFOSR) Dynamic Data-
Driven Application Systems (DDDAS) award
number FA9550-18-1-0427, National Science
Foundation (NSF) research projects NSF-1624668
and NSF-1849113, (NSF) DUE-1303362
(Scholarship-for-Service), National Institute of
Standards and Technology (NIST) 70NANB18H263,
and Department of Energy/National Nuclear Security
Administration under Award Number(s) DE-
NA0003946.
REFERENCES
AHRQ.(2020). How do you measure fall rates and fall
prevention practices? Retrieved from https://
www.ahrq.gov/professionals/systems/hospital/fallpxto
olkit/fallpxtk5.html
Babylonhealth. (2020). Babylon health UK - the online
doctor and prescription services app. Retrieved from
https://www.babylonhealth.com/
Chaccour, K., Darazi, R., El Hassani, A. H., & Andres, E.
(2016). From fall detection to fall prevention: A generic
classification of fall-related systems. IEEE Sensors
Journal, 17 (3), 812–822.
Chung, K., & Park, R. C. (2019). Chatbot-based healthcare
service with a knowledge base for cloud computing.
Cluster Computing, 22 (1), 1925– 1937.
Churpek, M. M., Yuen, T. C., Huber, M. T., Park, S. Y.,
Hall, J. B., & Edelson, D. P. (2012). Predicting cardiac
arrest on the wards: a nested case-control study. Chest,
141 (5), 1170–1176.
Churpek, M. M., Yuen, T. C., Winslow, C., Robicsek, A.
A., Meltzer, D. O., Gibbons, R. D., & Edelson, D. P.
(2014). Multicenter development and validation of a
risk stratification tool for ward patients. American
Journal of Respiratory and Critical Care Medicine, 190
(6), 649–655.
Comendador, B. E. V., Francisco, B. M. B., Medenilla, J.
S., & Mae, S. (2015). Pharmabot: a pediatric generic
medicine consultant chatbot. Journal of Automation
and Control Engineering Vol, 3 (2).
Fadhil, A., & Gabrielli, S. (2017). Addressing challenges in
promoting healthy lifestyles: the al-chatbot approach.
In Proceedings of the 11th EAI International
Conference on Pervasive Computing Technologies for
Healthcare (pp. 261–265).
Google. (2020). Dialogflow | Google Cloud. Author.
Retrieved from https://cloud.google.com/dialogflow
Gu, X., Li, M., Cao, Y., & Xiong, L. (2019). Supporting
both range queries and frequency estimation with local
differential privacy. In 2019 IEEE Conference on
Communications and Network Security (CNS) (pp.
124–132).
Gu, X., Li, M., Cheng, Y., Xiong, L., & Cao, Y. (2020).
PCKV: Locally differentially private correlated key-
value data collection with optimized utility. In 29th
USENIX security symposium (USENIX security 20) (pp.
967–984).
Habib, M. A., Mohktar, M. S., Kamaruzzaman, S. B., Lim,
K. S., Pin, T. M., & Ibrahim, F. (2014). Smartphone-
based solutions for fall detection and prevention:
challenges and open issues. Sensors, 14 (4), 7181–
7208.
Health, B. (2020). Retrieved from https://www.
buoyhealth.com/
IBM. (2020). AI healthcare solutions. Retrieved from
https://www.ibm.com/watson-health
Inouye, S. K., Bogardus Jr, S. T., Charpentier, P. A., Leo-
Summers, L., Acam-pora, D., Holford, T. R., & Cooney
Jr, L. M. (1999). A multicomponent intervention to
prevent delirium in hospitalized older patients. New
England journal of medicine,340(9), 669–676.
Inouye, S. K., Marcantonio, E. R., Kosar, C. M., Tommet,
D., Schmitt, E. M., Travison, T. G., Jones, R. N. (2016).
The short-term and long-term relationship between
delirium and cognitive trajectory in older surgical
patients.
Alzheimer’s & Dementia, 12 (7), 766–775.
Julayanont, P., & Nasreddine, Z. S. (2017). Montreal
cognitive assessment (moca): concept and clinical
review. In Cognitive Screening Instruments (pp. 139–
195). Springer.
Marcantonio, E. R. (2017). Delirium in hospitalized older
adults. New England Journal of Medicine, 377(15),
pp.1456-1466.
Microsoft. (2020, Jul). Microsoft health bot project - ai at
work for your patients. Retrieved from https://www.
microsoft.com/en-us/research/project/health-bot/
Mitchell, M. D., Lavenberg, J. G., Trotta, R., & Umscheid,
C. A. (2014). Hourly rounding to improve nursing
responsiveness: a systematic review. The Journal of
nursing administration,44(9), 462.
Pacheco, J., & Hariri, S. (2016). IoT security framework for
smart cyberinfrastructures. In 2016 IEEE 1st
International workshops on Foundations and
Applications of self* systems (fas* w) (pp. 242–247).
PACT.(2020). Florence your health assistant. Retrieved
from https://www.florence.chat/
Paoli, C. J., Reynolds, M. A., Sinha, M., Gitlin, M., &
Crouser, E. (2018).Epidemiology and costs of sepsis
in the united states—an analysis based on timing of