Gynecology, 169(6), 1636–1653. https://doi.org/10.
1016/0002-9378(93)90456-S
di Marco, L. Y., di Maria, C., Tong, W. C., Taggart, M. J.,
Robson, S. C., & Langley, P. (2014). Recurring patterns
in stationary intervals of abdominal uterine
Electromyograms during gestation. Medical and
Biological Engineering and Computing, 52(8), 707–
716. https://doi.org/10.1007/s11517-014-1174-6
Diaz-Martinez, A., Mas-Cabo, J., Prats-Boluda, G., Garcia-
Casado, J., Cardona-Urrego, K., Monfort-Ortiz, R.,
Lopez-Corral, A., de Arriba-Garcia, M., Perales, A., &
Ye-Lin, Y. (2020). A Comparative Study of Vaginal
Labor and Caesarean Section Postpartum Uterine
Myoelectrical Activity. Sensors, 20(11), 3023. https://
doi.org/10.3390/s20113023
Euliano, T. Y., Nguyen, M. T., Darmanjian, S., Busowski,
J. D., Euliano, N., & Gregg, A. R. (2016). Monitoring
Uterine Activity during Labor: Clinician Interpretation
of Electrohysterography versus Intrauterine Pressure
Catheter and Tocodynamometry. American Journal of
Perinatology, 33(9), 831–838. https://doi.org/10
.1055/s-0036-1572425
Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F.
(2008). A comparison of various linear and non-linear
signal processing techniques to separate uterine EMG
records of term and pre-term delivery groups. Medical
and Biological Engineering and Computing, 46(9),
911–922. https://doi.org/10.1007/s11517-008-0350-y
Fuchs, I. B., Henrich, W., Osthues, K., & Dudenhausen, J.
W. (2004). Sonographic cervical length in singleton
pregnancies with intact membranes presenting with
threatened preterm labor. Ultrasound in Obstetrics and
Gynecology, 24(5), 554–557. https://doi.org/10.1002/
uog.1714
Garcia-Casado, J., Ye-Lin, Y., Prats-Boluda, G., Mas-
Cabo, J., Alberola-Rubio, J., & Perales, A. (2018).
Electrohysterography in the diagnosis of preterm birth:
A review. Physiological Measurement, 39(2), 02TR01.
https://doi.org/10.1088/1361-6579/aaad56
Garfield, R. E., & Maner, W. L. (2007). Physiology and
electrical activity of uterine contractions. Seminars in
Cell and Developmental Biology, 18(3), 289–295.
https://doi.org/10.1016/j.semcdb.2007.05.004
Jager, F., Libenšek, S., & Geršak, K. (2018).
Characterization and automatic classification of pre-
term and term uterine records. PLoS ONE, 13(8),
e0202125. https://doi.org/10.1371/journal.pone.0202125
Kafantaris, E., Piper, I., Lo, T. Y. M., & Escudero, J.
(2019). Application of Dispersion Entropy to Healthy
and Pathological Heartbeat ECG Segments.
Proceedings of the Annual International Conf. of the
IEEE Engineering in Medicine and Biology Society,
EMBS, 2269–2272. https://doi.org/10.1109/EMBC.
2019.8856554
Leung, C. (2004). Born too soon. In J. L. CP Howson, MV
Kinney (Ed.), Neuroendocrinology Letters (Vol. 25,
Issue SUPPL 1). https://doi.org/http://whqlibdoc.
who.int/publications/2012/9789241503433_eng.pdf
Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J.,
Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019).
Design and Assessment of a Robust and Generalizable
ANN-Based Classifier for the Prediction of Premature
Birth by means of Multichannel Electrohysterographic
Records. Journal of Sensors, 2019, 1–13. https://doi.
org/10.1155/2019/5373810
Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-
Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2019).
Uterine electromyography for discrimination of labor
imminence in women with threatened preterm labor
under tocolytic treatment. Medical and Biological
Engineering and Computing, 57(2), 401–411. https://
doi.org/10.1007/s11517-018-1888-y
Mas-Cabo, J., Ye-Lin, Y., Garcia-Casado, J., Díaz-
Martinez, A., Perales-Marin, A., Monfort-Ortiz, R.,
Roca-Prats, A., López-Corral, Á., & Prats-Boluda, G.
(2020). Robust characterization of the uterine
myoelectrical activity in different obstetric scenarios.
Entropy, 22(7), 743. https://doi.org/10.3390/e22070743
Mischi, M., Chen, C., Ignatenko, T., de Lau, H., Ding, B.,
Oei, S. G. G., & Rabotti, C. (2018). Dedicated Entropy
Measures for Early Assessment of Pregnancy
Progression from Single-channel Electrohysterography.
IEEE Transactions on Biomedical Engineering, 65(4),
875–884. https://doi.org/10.1109/TBME.2017.2723933
O’Hara, S., Zelesco, M., & Sun, Z. (2013). Cervical length
for predicting preterm birth and a comparison of
ultrasonic measurement techniques. Australasian
Journal of Ultrasound in Medicine, 16(3), 124–134.
https://doi.org/10.1002/j.2205-0140.2013.tb00100.x
Petrou, S., Yiu, H. H., & Kwon, J. (2019). Economic
consequences of preterm birth: A systematic review of
the recent literature (2009-2017). Archives of Disease
in Childhood, 104(5), 456–465. https://doi.org/
10.1136/archdischild-2018-315778
Pincus, S. M. (1991). Approximate entropy as a measure of
system complexity. Proceedings of the National
Academy of Sciences of the United States of America,
88(6), 2297–2301. https://doi.org/10.1073/pnas.88.6.
2297
Richman, J. S., & Moorman, J. R. (2000). Physiological
time-series analysis using approximate entropy and
sample entropy. American Journal of Physiology-Heart
and Circulatory Physiology, 278(6), H2039–H2049.
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
Rostaghi, M., & Azami, H. (2016). Dispersion Entropy: A
Measure for Time-Series Analysis. IEEE Signal
Processing Letters, 23(5), 610–614. https://
doi.org/10.1109/LSP.2016.2542881
Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral
characterization of human EHG frequency components
based on the extraction and reconstruction of the ridges
in the scalogram. Annual International Conference of
the IEEE Engineering in Medicine and Biology -
Proceedings
, 1872–1875. https://doi.org/10.1109/
IEMBS.2007.4352680
Xiong, J., Liang, X., Zhu, T., Zhao, L., Li, J., & Liu, C.
(2019). A new physically meaningful threshold of
sample entropy for detecting cardiovascular diseases.
Entropy, 21(9), 830. https://doi.org/10.3390/e210
90830.