REFERENCES
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detec-
tion. arXiv preprint arXiv:2004.10934.
Chong, Y. S. and Tay, Y. H. (2017). Abnormal event detec-
tion in videos using spatiotemporal autoencoder. In
International Symposium on Neural Networks, pages
189–196. Springer.
Deepak, K., Chandrakala, S., and Mohan, C. K. (2020).
Residual spatiotemporal autoencoder for unsuper-
vised video anomaly detection. Signal, Image and
Video Processing, pages 1–8.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Duman, E. and Erdem, O. A. (2019). Anomaly detection
in videos using optical flow and convolutional autoen-
coder. IEEE Access, 7:183914–183923.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88(2):303–338.
Guo, Z., Liao, W., Xiao, Y., Veelaert, P., and Philips, W.
(2019). Deep learning fusion of rgb and depth images
for pedestrian detection. In 30th British Machine Vi-
sion Conference, pages 1–13.
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K.,
and Davis, L. S. (2016). Learning temporal regularity
in video sequences. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 733–742.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017a). Feature pyramid networks
for object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2117–2125.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017b). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path ag-
gregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 8759–8768.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Lu, C., Shi, J., and Jia, J. (2013). Abnormal event detection
at 150 fps in matlab. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2720–
2727.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2010). Anomaly detection in crowded scenes. In
2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 1975–
1981. IEEE.
Mazzeo, P. L., Spagnolo, P., Leo, M., and D’Orazio, T.
(2008). Visual players detection and tracking in soc-
cer matches. In 2008 IEEE Fifth International Con-
ference on Advanced Video and Signal Based Surveil-
lance, pages 326–333. IEEE.
Nguyen, T.-N. and Meunier, J. (2019). Anomaly detection
in video sequence with appearance-motion correspon-
dence. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1273–1283.
Punn, N. S., Sonbhadra, S. K., and Agarwal, S. (2020).
Monitoring covid-19 social distancing with person de-
tection and tracking via fine-tuned yolo v3 and deep-
sort techniques. arXiv preprint arXiv:2005.01385.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7263–
7271.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Shine, L., Edison, A., and , J. C. V. (2019). A compara-
tive study of faster r-cnn models for anomaly detec-
tion in 2019 ai city challenge. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops.
Song, H., Sun, C., Wu, X., Chen, M., and Jia, Y. (2019).
Learning normal patterns via adversarial attention-
based autoencoder for abnormal event detection in
videos. IEEE Transactions on Multimedia.
TrygFonden et al. (2018). Camera monitoring of ports. last
accessed: September 25, 2020.
Ultralytics (2020). Yolov5. last accessed: August 20, 2020.
Voigt, P. and Von dem Bussche, A. (2017). The eu general
data protection regulation (gdpr). A Practical Guide,
1st Ed., Cham: Springer International Publishing.
WHO (2014). Global report on drowning: preventing a
leading killer.
Supervised versus Self-supervised Assistant for Surveillance of Harbor Fronts
617