et al., 2018). The tool also requires rigorous usability
evaluation and testing in clinical settings.
The decision support tool presented here is a
working laboratory for our team and it is constantly
being updated and extended with new features.
REFERENCES
Apache HTTP Server Project. (n.d.). The Apache Software
Foundation. https://httpd.apache.org/
Belard, A., Buchman, T., Forsberg, J., Potter, B. K., Dente,
C. J., Kirk, A., & Elster, E. (2017). Precision diagnosis:
a view of the clinical decision support systems (CDSS)
landscape through the lens of critical care. Journal of
clinical monitoring and computing, 31(2), 261-271.
Bouwstra, H., Smit, E. B., Wattel, E. M., van der Wouden,
J. C., Hertogh, C. M., Terluin, B., & Terwee, C. B.
(2019). Measurement properties of the Barthel Index in
geriatric rehabilitation. Journal of the American
Medical Directors Association, 20(4), 420-425.
Du, M., Liu, N., & Hu, X. (2019). Techniques for
interpretable machine learning. Communications of the
ACM, 63(1), 68-77.
FDA, Proposed Regulatory Framework for Modifications
to Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD)-
Discussion Paper and Request for Feedback. (n.d.).
Fried, T. R., Bradley, E. H., Towle, V. R., & Allore, H.
(2002). Understanding the treatment preferences of
seriously ill patients. New England Journal of
Medicine, 346(14), 1061-1066.
Gobbens, R. J., & van Assen, M. A. (2014). The prediction
of ADL and IADL disability using six physical
indicators of frailty: a longitudinal study in the
Netherlands. Current gerontology and geriatrics
research, 2014.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F.,
Giannotti, F., & Pedreschi, D. (2018). A survey of
methods for explaining black box models. ACM
computing surveys (CSUR), 51(5), 1-42.
Faurot, K.R., Jonsson Funk, M., Pate, V., Brookhart, M.A.,
Patrick, A., Hanson, L.C., & Stürmer, T. (2015). Using
claims data to predict dependency in activities of daily
living as a proxy for frailty. Pharmacoepidemiology
and drug safety, 24(1), 59-66.
HCUP CCS. Healthcare Cost and Utilization Project
(HCUP). March 2017. Agency for Healthcare Research
and Quality, Rockville, MD. www.hcup-us.ahrq.gov/
toolssoftware/ccs/ccs.jsp.
Khairat, S., Marc, D., Crosby, W., & Al Sanousi, A. (2018).
Reasons for physicians not adopting clinical decision
support systems: critical analysis. JMIR medical
informatics, 6(2), e24.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to
interpreting model predictions. In Advances in neural
information processing systems (pp. 4765-4774).
Mahoney, F.I., & Barthel, D. W. (1965). Functional
evaluation: the Barthel Index: a simple index of
independence useful in scoring improvement in the
rehabilitation of the chronically ill. Maryland state
medical journal.
McCarthy, E. P., Phillips, R. S., Zhong, Z., Drews, R. E., &
Lynn, J. (2000). Dying with cancer: patients' function,
symptoms, and care preferences as death
approaches. Journal of the American Geriatrics
Society, 48(S1), S110-S121.
MDS 3.0 Technical Information. (n.d.). Retrieved October
26, 2020, from https://www.cms.gov/
Michalski, R. S. (1983). A theory and methodology of
inductive learning. In Machine learning (pp. 83-134).
Springer, Berlin, Heidelberg.
Min, H., Mobahi, H., Irvin, K., Avramovic, S., &
Wojtusiak, J. (2017). Predicting activities of daily
living for cancer patients using an ontology-guided
machine learning methodology. Journal of biomedical
semantics, 8(1), 39.
Nie, A., Zehnder, A., Page, R. L., Zhang, Y., Pineda, A. L.,
Rivas, M. A., ... & Zou, J. (2018). DeepTag: inferring
diagnoses from veterinary clinical notes. NPJ digital
medicine, 1(1), 1-8.
Pearl, J. (2019). The seven tools of causal inference, with
reflections on machine learning. Communications of
the ACM, 62(3), 54-60.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... & Vanderplas, J. (2011).
Scikit-learn: Machine learning in Python. the Journal
of machine Learning research, 12, 2825-2830.
Peiffer-Smadja, N., Rawson, T. M., Ahmad, R., Buchard,
A., Pantelis, G., Lescure, F. X., ... & Holmes, A. H.
(2019). Machine learning for clinical decision support
in infectious diseases: a narrative review of current
applications. Clinical Microbiology and Infection.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "
Why should I trust you?" Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM
SIGKDD international conf. on knowledge discovery
and data mining (pp. 1135-1144).
Richens, J. G., Lee, C. M., & Johri, S. (2020). Improving
the accuracy of medical diagnosis with causal machine
learning. Nature communications, 11(1), 1-9.
Stikic, M., Huynh, T., Van Laerhoven, K., & Schiele, B.
(2008, January). ADL recognition based on the
combination of RFID and accelerometer sensing. In
2008 second international conference on pervasive
computing technologies for healthcare (pp. 258-263).
Wasylewicz, A. T. M., & Scheepers-Hoeks, A. M. J. W.
(2019). Clinical decision support systems. In
Fundamentals of Clinical Data Science (pp. 153-169).
Springer, Cham.
Wojtusiak, J., Levy, C. R., Williams, A. E., & Alemi, F.
(2016). Predicting functional decline and recovery for
residents in veterans affairs nursing homes. The
Gerontologist, 56(1), 42-51.
Wojtusiak, J., Asadzadehzanjani, N., Levy, C., Alemi, F.,
Williams,A., Computational Barthel Index: An Autom-
ated Tool for Assessing and Predicting Activities of Dai-
ly Living Among Nursing Home Patients, BMC Medical
Informatics and Decision Making, 2020 (in press).