Qiangguo Jin, Zhaopeng Meng, Changming Sun, Leyi Wei,
Ran Su. RA-UNet: A hybrid deep attention-aware net-
work to extract liver and tumor in CT scans. arXiv
preprint arXiv:1811.01328. 2018.
Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, Vol.5(2),
pp.157–166.1994.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Deep residual learning for image recognition. Con-
ference on Computer Vision and Pattern Recognition.
2016.
Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. Med-
ical Image Computing and Computer-Assisted Inter-
vention, Springer, LNCS, Vol.9351: 234-241, 2015.
Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, Jiaya Jia. Pyramid scene parsing network. Con-
ference on Computer Vision and Pattern Recognition
2017.
Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, Jiaya Jia. Pyramid scene parsing network. Con-
ference on Computer Vision and Pattern Recognition.
2017.
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, Zhuowen Tu. Deeply-supervised nets. Artifi-
cial intelligence and statistics. 2015.
Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, Jianming Liang. ”Unet++: A nested u-net
architecture for medical image segmentation.” Deep
Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support. Springer,
pp.3-11,2018.
Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. Conference on Computer Vision and Pattern
Recognition. 2018.
Ashish Vaswani, Noam Shazeer, NikiParmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Il-
lia Polosukhin. Attention Is All You Need. Advances
in Neural Information Processing Systems. 2017.
Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, Yun Fu. Image super-resolution using very
deep residual channel attention networks. In: Proceed-
ings of the European Conference on Computer Vision.
pp. 286-301, 2018.
Sanghyun Woo, Jongchan Park, Joon-Young Lee, In So
Kweon. Cbam: Convolutional block attention mod-
ule. In: Proceedings of the European Conference on
Computer Vision. pp. 3-19, 2018.
Yanting Hu, Jie Li, Yuanfei Huang, Xinbo Gao. Channel-
wise and Spatial Feature Modulation Network for
Single Image Super-Resolution. arXiv:1809.11130,
2018.
Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew
Lee, Mattias Heinrich, Kazunari Misawa, Kensaku
Mori, Steven McDonagh, Nils Y Hammerla, Bern-
hard Kainz, Ben Glocker, Daniel Rueckert. Attention
U-Net: learning where to look for the pancreas. Inter-
national Conference on Medical Imaging with Deep
Learning . 2018.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, Vol.15, No.1,
pp.1929-1958, 2014.
J. Bergstra, R. Bardenet, Yoshua Bengio, B. & K´egl. Algo-
rithms for hyper-parameter optimization. Advances in
neural information processing systems. 2011.
A. Imanishi, T. Murata, M. Sato, K. Hotta, I. Imayoshi,
M. Matsuda, and K. Terai, “A Novel Morphological
Marker for the Analysis of Molecular Activities at
the Single-cell Level,” Cell Structure and Function,
Vol.43, No.2, pp.129-140, 2018.
Stephan Gerhard, Jan Funke, Julien Martel, AlbertCardona,
Richard Fetter. Segmented anisotropic ssTEM dataset
of neural tissue. figshare. Retrieved 16:09, (GMT)
Nov 20, 2013.