Table 4: The extractiong results of 2L-FANN and 3L-FANN.
Sample Methods C
m
C
bl der
S RMSRE
spectrum 1 FNN 1.31% 0.56% 90.23% 2.08%
MC 2.13% 0.54% 90.45% 3.28%
INN 1.84%
INN+PCA 1.72%
spectrum 2 FNN 3.23% 1.02% 94.95% 4.27%
MC 3.69% 1.08% 94.91% 5.69%
INN 2.90%
INN+PCA 2.87%
spectrum 3 FNN 10.09% 2.41% 80.00% 10.76%
MC 9.79% 2.03% 80.02% 8.37%
INN 10.69%
INN+PCA 10.73%
REFERENCES
Alerstam, E., Svensson, T., and Andersson-Engels, S.
(2008). Parallel computing with graphics process-
ing units for high-speed monte carlo simulation of
photon migration. Journal of biomedical optics,
13(6):060504.
Angelopoulou, E. (2001). Understanding the color of hu-
man skin. In Human vision and electronic imaging
VI, volume 4299, pages 243–251. International Soci-
ety for Optics and Photonics.
Baranoski, G. V. and Krishnaswamy, A. (2010). Light and
skin interactions: simulations for computer graphics
applications. Morgan Kaufmann.
Carcagn
`
ı, P., Leo, M., Cuna, A., Mazzeo, P. L., Spagnolo,
P., Celeste, G., and Distante, C. (2019). Classifica-
tion of skin lesions by combining multilevel learnings
in a densenet architecture. In International Confer-
ence on Image Analysis and Processing, pages 335–
344. Springer.
Chen, Y.-W., Chen, C.-C., Huang, P.-J., and Tseng, S.-
H. (2016). Artificial neural networks for retriev-
ing absorption and reduced scattering spectra from
frequency-domain diffuse reflectance spectroscopy at
short source-detector separation. Biomedical optics
express, 7(4):1496–1510.
Cooksey, C. C., Allen, D. W., and Tsai, B. K. (2017). Ref-
erence data set of human skin reflectance. J. Res. Nat.
Inst. Standards Technol., 122:1–5.
Fang, Q. and Boas, D. A. (2009). Monte carlo simula-
tion of photon migration in 3d turbid media accel-
erated by graphics processing units. Optics express,
17(22):20178–20190.
Flewelling, R. (2000). Noninvasive optical monitoring, in
the biomedical engineering handbook, jd bronzino,
ed.
Fredriksson, I., Larsson, M., and Str
¨
omberg, T. (2012).
Inverse monte carlo method in a multilayered tissue
model for diffuse reflectance spectroscopy. Journal of
biomedical optics, 17(4):047004.
Furutsu, K. (1980). Diffusion equation derived from space-
time transport equation. JOSA, 70(4):360–366.
Ishimaru, A. (1978). Wave propagation and scattering in
random media, volume 2. Academic press New York.
Jacques, S. and Prahl, S. Assorted spectra. [EB/OL]. https://
omlc.org/spectra/index.html Accessed July 15, 2020.
Jacques, S. L. (1996). Origins of tissue optical properties
in the uva, visible, and nir regions. OSA TOPS on
advances in optical imaging and photon migration,
2:364–369.
Jacques, S. L. (2013). Optical properties of biological
tissues: a review. Physics in Medicine & Biology,
58(11):R37–61.
Jacques, S. L., Glickman, R. D., and Schwartz, J. A.
(1996). Internal absorption coefficient and threshold
for pulsed laser disruption of melanosomes isolated
from retinal pigment epithelium. In Laser-Tissue In-
teraction VII, volume 2681, pages 468–478. Interna-
tional Society for Optics and Photonics.
Leo, M., Carcagn
`
ı, P., Mazzeo, P. L., Spagnolo, P., Caz-
zato, D., and Distante, C. (2020). Analysis of fa-
cial information for healthcare applications: A survey
on computer vision-based approaches. Information,
11(3):128.
Maeda, T., Arakawa, N., Takahashi, M., and Aizu, Y.
(2010). Monte carlo simulation of spectral reflectance
using a multilayered skin tissue model. Optical re-
view, 17(3):223–229.
Mazzoli, A., Munaretto, R., and Scalise, L. (2010). Prelim-
inary results on the use of a noninvasive instrument
for the evaluation of the depth of pigmented skin le-
sions: numerical simulations and experimental mea-
surements. Lasers in medical science, 25(3):403–410.
Mehr
¨
ubeo
˘
glu, M., Kehtarnavaz, N., Marquez, G., Duvic,
M., and Wang, L. V. (2002). Skin lesion classifica-
tion using oblique-incidence diffuse reflectance spec-
troscopic imaging. applied optics, 41(1):182–192.
Nagli
ˇ
c, P., Vidovi
ˇ
c, L., Milani
ˇ
c, M., Randeberg, L. L., and
Majaron, B. (2019). Suitability of diffusion approx-
imation for an inverse analysis of diffuse reflectance
spectra from human skin in vivo. Osa Continuum,
2(3):905–922.
Parsad, D., Wakamatsu, K., Kanwar, A., Kumar, B., and Ito,
S. (2003). Eumelanin and phaeomelanin contents of
Quantitative Analysis of Skin using Diffuse Reflectance for Non-invasive Pigments Detection
613