of the 1st Workshop on Visualization for the Digital
Humanities, VIS4DH ’16.
J
¨
anicke, S., Franzini, G., Cheema, M. F., and Scheuermann,
G. (2015). On close and distant reading in digital hu-
manities: A survey and future challenges. In Proceed-
ings of the EG/VGTC Conference on Visualization —
STARs, EuroVis ’15. The Eurographics Association.
J
¨
anicke, S., Franzini, G., Cheema, M. F., and Scheuermann,
G. (2017). Visual text analysis in digital humanities.
Computer Graphics Forum, 36(6):226–250.
Jurafsky, D. and Martin, J. H. (2009). Speech and Language
Processing. Prentice-Hall, Inc., 2nd edition.
Karduni, A., Cho, I., Wesslen, R., Santhanam, S., Volkova,
S., Arendt, D. L., Shaikh, S., and Dou, W. (2019). Vul-
nerable to misinformation? Verifi! In Proceedings of
the 24th International Conference on Intelligent User
Interfaces, IUI ’19, pages 312–323. ACM.
Kerracher, N., Kennedy, J., and Chalmers, K. (2015). A
task taxonomy for temporal graph visualisation. IEEE
Transactions on Visualization and Computer Graph-
ics, 21(10):1160–1172.
Kerren, A., K
¨
ostinger, H., and Zimmer, B. (2012). ViN-
Cent — Visualization of network centralities. In Pro-
ceedings of the International Conference on Computer
Graphics Theory and Applications and International
Conference on Information Visualization Theory and
Applications (VISIGRAPP ’12) — Volume 1: IVAPP,
IVAPP ’12, pages 703–712. SciTePress.
Kerren, A., Purchase, H., and Ward, M. O., editors (2014).
Multivariate Network Visualization. Springer.
Kim, S., Weber, I., Wei, L., and Oh, A. (2014). Sociolin-
guistic analysis of Twitter in multilingual societies. In
Proceedings of the ACM Conference on Hypertext and
Social Media, HT ’14, pages 243–248. ACM.
Kirby, R. M. and Meyer, M. (2013). Visualization col-
laborations: What works and why. IEEE Computer
Graphics and Applications, 33(6):82–88.
Kivel
¨
a, M., Arenas, A., Barthelemy, M., Gleeson, J. P.,
Moreno, Y., and Porter, M. A. (2014). Multilayer net-
works. Journal of Complex Networks, 2(3):203–271.
Kivel
¨
a, M., McGee, F., Melanc¸on, G., Riche, N. H., and
von Landesberger, T. (2019). Visual analytics of mul-
tilayer networks across disciplines (Dagstuhl Seminar
19061). Dagstuhl Reports, 9(2):1–26.
Kosara, R., Drury, F., Holmquist, L. E., and Laidlaw, D. H.
(2008). Visualization criticism. IEEE Computer
Graphics and Applications, 28(3):13–15.
Kucher, K. and Kerren, A. (2015). Text visualization tech-
niques: Taxonomy, visual survey, and community in-
sights. In Proceedings of the IEEE Pacific Visual-
ization Symposium, PacificVis ’15, pages 117–121.
IEEE.
Kucher, K., Martins, R. M., Paradis, C., and Kerren, A.
(2020). StanceVis Prime: Visual analysis of sentiment
and stance in social media texts. Journal of Visualiza-
tion, 23(6):1015–1034.
Kucher, K., Paradis, C., and Kerren, A. (2018). The state of
the art in sentiment visualization. Computer Graphics
Forum, 37(1):71–96.
Labov, W. (2001). Principles of Linguistic Change, Volume
2: Social Factors. Wiley.
Laitinen, M. (2020). Empirical perspectives on English
as a lingua franca (ELF) grammar. World Englishes,
39(3):427–442.
Laitinen, M., Fatemi, M., and Lundberg, J. (2020). Size
matters: Digital social networks and language change.
Frontiers in Artificial Intelligence, 3:46.
Laitinen, M. and Lundberg, J. (2020). ELF, language
change and social networks: Evidence from real-time
social media data. In Language Change: The Impact
of English as a Lingua Franca, pages 179–204. Cam-
bridge University Press.
Laitinen, M., Lundberg, J., Levin, M., and Lakaw, A.
(2017). Revisiting weak ties: Using present-day social
media data in variationist studies. In Exploring Future
Paths for Historical Sociolinguistics, pages 303–325.
John Benjamins Publishing Company.
Laitinen, M., Lundberg, J., Levin, M., and Martins, R. M.
(2018). The Nordic Tweet Stream: A dynamic real-
time monitor corpus of big and rich language data.
In Proceedings of the 3rd Digital Humanities in the
Nordic Countries Conference, DHN ’18, pages 349–
362. CEUR-WS.org.
Leskovec, J. and Sosi
ˇ
c, R. (2016). SNAP: A general-
purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Tech-
nology, 8(1).
Liu, S., Wang, X., Collins, C., Dou, W., Ouyang, F., El-
Assady, M., Jiang, L., and Keim, D. A. (2019). Bridg-
ing text visualization and mining: A task-driven sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 25(7):2482–2504.
Marshall, J. (2004). Language Change and Sociolinguis-
tics: Rethinking Social Networks. Palgrave Macmillan
UK.
Martins, R. M., Simaki, V., Kucher, K., Paradis, C., and
Kerren, A. (2017). StanceXplore: Visualization for
the interactive exploration of stance in social media.
In Proceedings of the 2nd Workshop on Visualization
for the Digital Humanities, VIS4DH ’17.
McCarty, C., Killworth, P. D., Bernard, H. R., Johnsen,
E. C., and Shelley, G. A. (2001). Comparing two
methods for estimating network size. Human Orga-
nization, 60(1):28–39.
McCarty, C., Molina, J. L., Aguilar, C., and Rota, L. (2007).
A comparison of social network mapping and personal
network visualization. Field Methods, 19(2):145–162.
McGee, F., Ghoniem, M., Melanc¸on, G., Otjacques, B., and
Pinaud, B. (2019). The state of the art in multilayer
network visualization. Computer Graphics Forum,
38(6):125–149.
Meyer, M. and Dykes, J. (2018). Reflection on reflec-
tion in applied visualization research. IEEE Computer
Graphics and Applications, 38(6):9–16.
Milroy, J. (1992). Linguistic Variation and Change: On the
Historical Sociolinguistics of English. Blackwell.
Milroy, J. and Milroy, L. (1985). Linguistic change, social
network and speaker innovation. Journal of Linguis-
tics, 21(2):339–384.
IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications
254