REFERENCES
Anil, C., Lucas, J., and Grosse, R. B. (2019). Sorting out
Lipschitz function approximation. In ICML.
Basirat, M. and Roth, P. M. (2019). Learning task-specific
activation functions using genetic programming. In
VisApp.
Basirat, M. and Roth, P. M. (2020). L*ReLU: Piece-wise
linear activation functions for deep fine-grained visual
categorization. In WACV.
Clevert, D., Unterthiner, T., and Hochreiter, S. (2016). Fast
and accurate deep network learning by exponential
linear units (ELUs). In ICLR.
Eberhart, R. and Kennedy, J. S. (1995). A new optimizer
using particle swarm theory. In Pro. Int’l Symposium
on Micro Machine and Human Science, pages 39–43.
Elfwing, S., Uchibe, E., and Doya, K. (2018). Sigmoid-
weighted linear units for neural network function ap-
proximation in reinforcement learning. Neural Net-
works, 107:3–11.
Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse
rectifier neural networks. In Proc. Int’l Conf. on Arti-
ficial Intelligence and Statistics.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley.
Gulcehre, C., Moczulski, M., Denil, M., and Bengio, Y.
(2016). Noisy activation functions. In ICML.
Hayou, S., Doucet, A., and Rousseau, J. (2018). On the
selection of initialization and activation function for
deep neural networks. arXiv:1805.08266.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In ICCV.
Hochreiter, S. (1998). The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. Int’l Journal of Uncertainty, Fuzziness and
Knowledge-Based System, 6(2):107–116.
Holland, J. H. (1992). Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT
Press.
Hornik, K. (1991). Approximation capabilities of mul-
tilayer feedforward networks. Neural Networks,
4(2):251–257.
Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., and Yan, S.
(2016). Deep learning with S-shaped rectified linear
activation units. In AAAI, pages 1737–1743.
Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L.
(2011). Novel dataset for fine-grained image catego-
rization. In Workshop on Fine-Grained Visual Cate-
gorization (CVPRW).
Klambauer, G., Unterthiner, T., Mayr, A., and Hochre-
iter, S. (2017). Self-normalizing neural networks. In
NeurIPS.
Koza, J. R., Bennett, F. H., and Stiffelman, O. (1999). Ge-
netic programming as a darwinian invention machine.
In European Conf. on Genetic Programming.
Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3D
object representations for fine-grained categorization.
In Int’l Workshop on 3D Representation and Recogni-
tion.
Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical Report 1 (4), 7, Univer-
sity of Toronto.
Li, Y., Fan, C., Li, Y., Wu, Q., and Ming, Y. (2018). Im-
proving deep neural network with multiple parametric
exponential linear units. Neurocomputing, 301:11–24.
Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., and
Ranilla, J. (2017). Particle swarm optimization for
hyper-parameter selection in deep neural networks. In
Genetic and Evolutionary Computation Conf.
Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier
nonlinearities improve neural network acoustic mod-
els. In Workshop on Deep Learning for Audio, Speech
and Language Processing (ICML).
Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. (2013). Fine-grained visual classification of air-
craft. arXiv:1306.5151.
Miranda, L. J. V. (2018). PySwarms, a research-toolkit for
Particle Swarm Optimization in Python. Journal of
Open Source Software, 3(21):433.
Nair, V. and Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In ICML.
Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bib-
liography. Annals of Operations Research, 63:511–
623.
Ramachandran, P., Zoph, B., and Le, Q. V. (2018). Search-
ing for activation functions. In ICLRW.
Schwefel, H.-P. (1987). Collective phenomena in evolu-
tionary systems. In Annual Meeting Problems of Con-
stancy and Change.
Sinha, T., Haidar, A., and Verma, B. (2018). Particle swarm
optimization based approach for finding optimal val-
ues of convolutional neural network parameters. In
IEEE Congress on Evolutionary Computation.
Sokoli
´
c, J., Giryes, R., Sapiro, G., and Rodrigues, M.
(2017). Robust large margin deep neural net-
works. IEEE Transactions on Signal Processing,
65(16):4265–4280.
Spall, J. C. (2003). Introduction to Stochastic Search and
Optimization. John Wiley & Sons, 1 edition.
Trottier, L., Gigu
`
ere, P., and Chaib-draa, B. (2017). Para-
metric exponential linear unit for deep convolutional
neural networks. In Int’l Conf. on Machine Learning
and Applications.
Tsuzuku, Y., Sato, I., and Sugiyama, M. (2018). Lipschitz-
margin training: Scalable certification of perturbation
invariance for deep neural networks. In NeurIPS.
Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie
(2011). The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California In-
stitute of Technology.
Wang, B., Sun, Y., Xue, B., and Zhang, M. (2018). Evolving
deep convolutional neural networks by variable-length
particle swarm optimization for image classification.
In IEEE Congress on Evolutionary Computation.
Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical
evaluation of rectified activations in convolution net-
work. arXiv:1505.00853.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
652