We assumed that the temperature remains
constant. Obviously, various parameters may have
different temperature dependencies, which can
further complicate the model.
The initial validation of our theoretical
predictions was performed on Pseudomonas
aeruginosa elsewhere (Caschera, 2021). P.
aeruginosa are a clinically relevant bacterial species
and produce pyoverdine, a fluorescent siderophore. It
can be of particular importance for remote
quantification of bacterial presence using
fluorescence bioimaging (Saiko, 2020). In Caschera
et al. (Caschera, 2021), the model parameters (N
0
and
C
0
) were set experimentally. The experimental data
show clear sigmoid dependence of bacterial
fluorescence on bacterial concentration. It persisted
through variations in temperature and inoculum
starting condition. While the results are very
preliminary, they indicate that P. aeruginosa
fluorescence is primarily nutrient-driven.
5 CONCLUSIONS
We have built two simple siderophore production
models (quorum sensing and resource dependency)
and linked them with Monod’s growth model. As a
result, siderophore accumulation is explicitly
expressed through bacterial concentration, which
allows direct experimental verification.
The nutrient-dependent model predicts a sigmoid
curve: three siderophore accumulation phases with
bacteria concentration growth: slow accumulation for
[N
0
, N
th
], fast linear accumulation for [N
th
, K/2], and
slow or no accumulation for [K/2, K).
The quorum-sensing model predicts two regimes
of siderophore accumulation: relatively slow
accumulation for [N
0
, N
cr
] and much faster non-linear
accumulation for [N
cr
, K).
These models’ interplay introduces more
complex behavior (e.g., start and stop of siderophore
production with bacterial population growth).
Such as models predict entirely different
behavior, experimental data may help differentiate
between them.
REFERENCES
Gompertz, B., 1825, On the nature of the function
expressive of the law of human mortality, and on a new
mode of determining the value of life contingencies.
Philos. Trans. R. Soc. London 115:513-585.
Verhulst, P.F., 1845, Recherches mathématiques sur la loi
d'accroissement de la population.Mém. Acad. r. Sci.
Lett. Belg. 18: 1–38.
Monod, J., 1941, Recherches sur la croissance des cultures
bactériennes Thèse de docteur ès sciences naturelles,
Paris.
Monod, J., 1949, The growth of bacterial cultures.A. Rev.
Microbiol. 3: 371–394.
Monod, J., 1950, La technique de culture continue: théorie
et applications. Annls Inst. Pasteur 79: 390–410.
Richards, F.J., 1959, A flexible growth function for
empirical use. J. Exp. Bot. 10:290-300.
Zwietering, M.H., Jongenburger, I., Rombouts, F.M.,
Van’tRiet, K., 1990, Modeling of the Bacterial Growth
Curve. Appl. Environ. Microbiol. 56: 1875-1881
Pla, M-L., Oltra, S., Esteban, M-D., et al., 2015,
Comparison of Primary Models to Predict Microbial
Growth by the Plate Count and Absorbance Methods,
BioMed Research International, 2015: 365025,
doi:10.1155/2015/365025.
Lobry, J.R., Flandrois, J.P., Carret, G., et al., 1992,
Monod’s bacterial growth model revisited, Bltn
Mathcal Biol 54: 117, doi:10.1007/BF02458623
Michaelis, L.; Menten, M.L., 1913, Die Kinetik der
Invertinwirkung. Biochem Z. 49: 333–369
Ratledge, C. & Dover, L. G., 2000, Iron metabolism in
pathogenic bacteria. A. Rev. Microbiol. 54: 881–941.
Eberl, H.J., Collinson, S. 2009, A modeling and simulation
study of siderophore mediated antagonism in dual-
species biofilms. Theor Biol Med Model; 6:30,
doi:10.1186/1742-4682-6-30
Niehus, R., Picot, A., Oliveira, N.M., Mitri, S. and Foster,
K.R., 2017, The evolution of siderophore production as
a competitive trait. Evolution, 71: 1443-1455,
doi:10.1111/evo.13230
West, S.A., Buckling, A., 2003, Cooperation, virulence and
siderophore production in bacterial parasites, Proc. R.
Soc. Lond. B 270: 37–44, doi: 10.1098/rspb.2002.2209
Fgaier, H, Feher, B, McKellar, R.C., Eberl, H.J, 2008,
Predictive modeling of siderophore production by
Pseudomonas fluorescens under iron limitation, J of
Theoretical Biology, 251(2), 348-362, doi:
10.1016/j.jtbi.2007.11.026.
Griffin, A.S., West, S.A., Buckling, A., 2004, Cooperation
and competition in pathogenic bacteria. Nature
430:1024–1027.
Caschera, A., Saiko, G., On Feasibility of Fluorescence-
Based Bacteria Presence Quantification: P.aeruginosa.
Accepted to Bioimaging 2021. SCITEPRESS
Bren, A., Hart, Y., Dekel, E., Koster, D., Alon, U., 2013,
The last generation of bacterial growth in limiting
nutrient. BMC Systems Biology 7:27.
Dockery, J.D., Keener, J.P., 2001, A Mathematical Model
for Quorum Sensing in Pseudomonas aeruginosa, Bull
of Math Bio, l63: 95-116.
Saiko, G. and Douplik, A., 2020, Extraction of Intrinsic
Fluorescence in Fluorescence Imaging of Turbid
Tissues. In the 13th International Joint Conference on
Biomedical Engineering Systems and Technologies,
SCITEPRESS, doi: 10.5220/0008919401230129