ing localization uncertainty for autonomous driving.
In ICCV.
Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers,
D., Reid, I., Roth, S., Schindler, K., and Leal-Taix
´
e, L.
(2020). Mot20: A benchmark for multi object tracking
in crowded scenes. arXiv preprint arXiv:2003.09003.
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q.
(2019). Centernet: Keypoint triplets for object detec-
tion. In CVPR.
Feichtenhofer, C., Pinz, A., and Zisserman, A. (2017). De-
tect to track and track to detect. In ICCV.
Fu, H., Wu, L., Jian, M., Yang, Y., and Wang, X. (2019).
Mf-sort: Simple online and realtime tracking with mo-
tion features.
Karthik, S., Prabhu, A., and Gandhi, V. (2020). Simple
unsupervised multi-object tracking. arXiv preprint
arXiv:2006.02609.
Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. (2015). Multi-
ple hypothesis tracking revisited. In ICCV.
Law, H. and Deng, J. (2018). Cornernet: Detecting objects
as paired keypoints. In ECCV.
Leal-Taix
´
e, L., Milan, A., Reid, I., Roth, S., and Schindler,
K. (2015). Motchallenge 2015: Towards a bench-
mark for multi-target tracking. arXiv preprint
arXiv:1504.01942.
Liang, L., Shen, H., Rompolas, P., Greco, V., Camilli, P. D.,
and Duncan, J. S. (2013). A multiple hypothesis based
method for particle tracking and its extension for cell
segmentation. In Inf Process Med Imaging.
Liu, Q., Liu, B., Wu, Y., Li, W., and Yu, N. (2019). Real-
time online multi-object tracking in compressed do-
main. IEEE Access.
Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rol-
nick, D., and Shavit, N. (2019). Cross-classification
clustering: An efficient multi-object tracking tech-
nique for 3-d instance segmentation in connectomics.
In CVPR.
Milan, A., Leal-Taix
´
e, L., Reid, I., Roth, S., and Schindler,
K. (2016). Mot16: A benchmark for multi-object
tracking. arXiv preprint arXiv:1603.00831.
Murray, S. (2017). Real-time multiple object tracking -
a study on the importance of speed. arXiv preprint
arXiv:1709.03572.
O
˘
sep, A., Mehner, W., Mathias, M., and Leibe, B. (2017).
Combined image- and world-space tracking in traffic
scenes. In ICRA.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. In arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In NIPS.
Ristani, E., Solera, F., Zou, R. S., Cucchiara, R., and
Tomasi, C. (2016). Performance measures and a data
set for multi-target, multi-camera tracking. In ECCV
Workshop.
Sadeghian, A., Alahi, A., and Savarese, S. (2017). Tracking
the untrackable: Learning to track multiple cues with
long-term dependencies. In ICCV.
Shi, J. and Tomasi, C. (1994). Good features to track. In
CVPR.
Sun, S., Akhtar, N., Song, H., Mian, A., and Shah, M.
(2018). Deep affinity network for multiple object
tracking. TPAMI.
Tang, S., Andres, B., Andriluka, M., and Schiele, B. (2016).
Multi-person tracking by multicut and deep matching.
In ECCV.
Tian, Z., Shen, C., Chen, H., and He, T. (2019). Fcos: Fully
convolutional one-stage object detection. In ICCV.
Tomasi, C. and Kanade, T. (1991). Detection and tracking
of point features. Technical report, Technical Report
CMU-CS-91-132, Carnegie Mellon University.
Voigtlaender, P., Krause, M.,
˘
Osep, A., and Luiten, J.
(2019). Mots: Multi-object tracking and segmenta-
tion. In CVPR.
Wang, G., Wang, Y., Zhang, H., Gu, R., and Hwang, J.-N.
(2019a). Exploit the connectivity: Multi-object track-
ing with trackletnet. In ACMMM.
Wang, Z., Zheng, L., Liu, Y., and Wang, S. (2019b). To-
wards real-time multi-object tracking. arXiv preprint
arxiv:1909.12605.
Wojke, N. and Bewley, A. (2018). Deep cosine metric learn-
ing for person re-identification. In WACV.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric. In ICIP.
Xu, J., Cao, Y., Zhang, Z., and Hu, H. (2019). Spatial-
temporal relation networks for multi-object tracking.
In ICCV.
Xu, Y., Ban, O. Y., Horaud, R., Leal-Taix
´
e, L., and
Alameda-Pineda, X. (2020). How to train your deep
multi-object tracker. In CVPR.
Yang, F., Choi, W., and Lin, Y. (2016). Exploit all the lay-
ers: Fast and accurate cnn object detector with scale
dependent pooling and cascaded rejection classifiers.
In CVPR.
Zhang, R., Wu, L., Yang, Y., Wu, W., Chen, W. Y., and
Xu, M. (2020a). Multi-camera multi-player tracking
with deep player identification in sports video. Pattern
Recognition.
Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W.
(2020b). A simple baseline for multi-object tracking.
arXiv preprint arXiv:2004.01888.
Zhou, X., Koltun, V., and Kr
¨
ahenb
¨
uhl, P. (2020). Tracking
objects as points. arXiv preprint arXiv:2004.01177.
Zhou, X., Wang, D., and Kr
¨
ahenb
¨
uhl, P. (2019a). Objects
as points. In arXiv preprint arXiv:1904.07850.
Zhou, X., Zhuo, J., and Kr
¨
ahenb
¨
uhl, P. (2019b). Bottom-
up object detection by grouping extreme and center
points. In CVPR.
Zhu, P., Wen, L., Bian, X., Ling, H., and Hu, Q. (2018).
Vision meets drones: A challenge. arXiv preprint
arXiv:1804.07437.
Object Hypotheses as Points for Efficient Multi-Object Tracking
835