6 SUMMARY AND CONCLUSION
With this position paper, we aimed to explain the
challenges to align mechanistic mathematical models
of AML and patient datasets.
A point to consider is the selection of
personalization parameters. A full personalization,
i.e. including all model parameters in the personalized
optimization problem, might be hard to solve.
Nevertheless, the full personalization is the most
stringent approach.
We, here, demonstrated that the numerical
solution identified by grid search for a reduced set of
personalization parameters lead already to usable
results. Furthermore, we implicitly introduced an
assumption about the parameters, namely that healthy
haematopoiesis equates to the population average.
This may be reasonable in certain situations. E.g.
within clinical trials, or standardized treatment
regimens, the dose of chemotherapy is fixed.
Assuming non-personalized treatment parameters for
an analysis of a trial cohort might be justifiable.
Overall, the degree of personalization should be
selected according to the intended analysis.
Future research in the field of AML models should
focus on a qualitative and quantitative validation
strategy. A more stringent validation will lead to
greater acceptance of modelling results in the clinical
practice. Furthermore, the sensitivity analysis of
personalized parameters will give valuable insights for
the quality and interpretability of model predictions.
The integration of mechanistic modelling into the
clinical practice can have a great impact, e.g. to
provide personalized prediction of treatment success,
and thus should be a major aim.
REFERENCES
Banck, J. C., & Görlich, D. (2019). In-silico comparison of
two induction regimens (7 + 3 vs 7 + 3 plus additional
bone marrow evaluation) in acute myeloid leukemia
treatment. BMC systems biology, 13(1), 18.
Döhner, H., Weisdorf, D. J., & Bloomfield, C. D. (2015).
Acute Myeloid Leukemia. The New England journal of
medicine, 373(12), 1136–1152.
Döhner, H., Estey, E., Grimwade, D., Amadori, S.,
Appelbaum, F. R., Büchner, T., Dombret, H., Ebert, B.
L., Fenaux, P., Larson, R. A., Levine, R. L., Lo-Coco,
F., Naoe, T., Niederwieser, D., Ossenkoppele, G. J.,
Sanz, M., Sierra, J., Tallman, M. S., Tien, H. F., Wei,
A. H., … Bloomfield, C. D. (2017). Diagnosis and
management of AML in adults: 2017 ELN
recommendations from an international expert panel.
Blood, 129(4), 424–447.
Estey E. H. (2020). Acute myeloid leukemia: 2021 update
on risk-stratification and management. American
journal of hematology, 10.1002/ajh.25975. Advance
online publication.
Fimmel, E. (2013). On optimal and suboptimal treatment
strategies for a mathematical model of leukemia.
Mathematical Biosciences and Engineering, 10(1),
151–165.
Fridman, E., Bonnet, C., Mazenc, F., & Djema, W. (2016).
Stability of the cell dynamics in acute myeloid
leukemia. Systems & Control Letters, 88, 91–100.
https://doi.org/10.1016/j.sysconle.2015.09.006
Gill S. I. (2019). How close are we to CAR T-cell therapy
for AML?. Best practice & research. Clinical
haematology, 32(4), 101104.
Hartmann, L., & Metzeler, K. H. (2019). Clonal
hematopoiesis and preleukemia-Genetics, biology, and
clinical implications. Genes, chromosomes & cancer,
58(12), 828–838.
Kenneth V. Price, Storn R.M., Lampinen J.A., 2006.
Differential Evolution - A Practical Approach to Global
Optimization. Berlin Heidelberg: Springer-Verlag.
Karline S., Petzoldt T., Setzer R.W., 2010. Solving
Differential Equations in R: Package deSolve. Journal
of Statistical Software, 33(9), 1-25.
O'Donnell, M. R., Tallman, M. S., Abboud, C. N., Altman,
J. K., Appelbaum, F. R., Arber, D. A., Bhatt, V., Bixby,
D., Blum, W., Coutre, S. E., De Lima, M., Fathi, A. T.,
Fiorella, M., Foran, J. M., Gore, S. D., Hall, A. C.,
Kropf, P., Lancet, J., Maness, L. J., Marcucci, G., …
Ogba, N. (2017). Acute Myeloid Leukemia, Version
3.2017, NCCN Clinical Practice Guidelines in
Oncology. Journal of the National Comprehensive
Cancer Network: JNCCN, 15(7), 926–957.
Percival, M. E., Lai, C., Estey, E., & Hourigan, C. S. (2017).
Bone marrow evaluation for diagnosis and monitoring
of acute myeloid leukemia. Blood reviews, 31(4), 185–
192.
R Core Team, 2020. R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-
project.org/.
Rubinow, S. I., & Lebowitz, J. L. (1975). A mathematical
model of neutrophil production and control in normal
man. Journal of Mathematical Biology, 1, 187.
Roeder, I., & Glauche, I. (2006). Towards an understanding
of lineage specification in hematopoietic stem cells: A
mathematical model for the interaction of transcription
factors GATA-1 and PU.1 Journal of Theoretical
Biology, 1–27.
Stiehl, T., & Marciniak-Czochra, A. (2012). Mathematical
Modeling of Leukemogenesis and Cancer Stem Cell
Dynamics. Mathematical Modelling of Natural
Phenomena, 7(1), 166–202.
Stiehl, T., Baran, N., Ho, A. D., & Marciniak
Czochra, A. (2014). Clonal selection and therapy resistance
in acute leukaemias: mathematical modelling explains
different proliferation patterns at diagnosis and relapse.
Journal of the Royal Society, Interface, 11(94),
20140079.