Maximum 7.5dB SNR is achieved at 201 Hz with
5.5 µV
RMS
LFP signal power. For EAP neuro-
potentials, SNR reaches 9 dB with 11.8 µV
RMS
input
power, against 22 µV
RMS
state-of-the-art in Figure 1
and Figure 2.
Hence, this demonstrates that the presented setup
can be adopted for thousands of pixels resolution
MEAs with the key advantadge of improving the
noise performances and thus decreasing the minimum
detectable signals power.
4 CONCLUSIONS
In this paper a complete electrical model of a single-
pixel Electrolyte-Oxide MOS Field-Effect-
Transistors neural interface has been presented. The
model includes all biological and electrical
parameters building the interface. Thanks to specific
noise and signal simulation results, the proposed
setup allows optimum design and sizing of all MOS
transistors embedded in the analog signal processing,
minimizing noise power, and enabling ultra-weak
slow oscillation detection. More specifically the
proposed optimum design features 9 dB SNR at 11.8
µV
RMS
extra-cellular Action Potentials power and 7.8
dB SNR for 5.5 µV
RMS
Local Field Potentials, at the
electrode node.
ACKNOWLEDGEMENTS
This work has been supported by Brain28 PRIN
Project founded by the Italian Ministry of the
University, Education and Research.
REFERENCES
Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D.
J., & Frey, U. (2015). Revealing neuronal function
through microelectrode array recordings. Frontiers in
neuroscience, 8, 423.
Thomas Jr, C. A., Springer, P. A., Loeb, G. E., Berwald-
Netter, Y., & Okun, L. M. (1972). A miniature
microelectrode array to monitor the bioelectric activity
of cultured cells. Experimental cell research, 74(1), 61-
66.
Pine, J. (1980). Recording action potentials from cultured
neurons with extracellular microcircuit electrodes.
Journal of neuroscience methods, 2(1), 19-31.
Gross, G. W., Williams, A. N., & Lucas, J. H. (1982).
Recording of spontaneous activity with photoetched
microelectrode surfaces from mouse spinal neurons in
culture. Journal of neuroscience methods, 5(1-2), 13-
22.
Cianci, E., Lattanzio, S., Seguini, G., Vassanelli, S., &
Fanciulli, M. (2012). Atomic layer deposited TiO2 for
implantable brain-chip interfacing devices. Thin solid
films, 520(14), 4745-4748.
Vallicelli, E. A., Reato, M., Maschietto, M., Vassanelli, S.,
Guarrera, D., Rocchi, F., ... & De Matteis, M. (2018).
Neural Spike Digital Detector on FPGA. Electronics,
7(12), 392.
Shahid, S., Walker, J., & Smith, L. S. (2009). A new spike
detection algorithm for extracellular neural recordings.
IEEE Transactions on Biomedical Engineering, 57(4),
853-866.
DeBusschere, B. D., & Kovacs, G. T. (2001). Portable cell-
based biosensor system using integrated CMOS cell-
cartridges. Biosensors and Bioelectronics, 16(7-8),
543-556.
Huys, R., Braeken, D., Jans, D., Stassen, A., Collaert, N.,
Wouters, J., ... & Verstreken, K. (2012). Single-cell
recording and stimulation with a 16k micro-nail
electrode array integrated on a 0.18 μm CMOS chip.
Lab on a Chip, 12(7), 1274-1280.
Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M.,
Mueller, J., ... & Kirstein, K. U. (2010). Switch-matrix-
based high-density microelectrode array in CMOS
technology. IEEE Journal of Solid-State Circuits, 45(2),
467-482.
Maccione, A., Simi, A., Nieus, T., Gandolfo, M., Imfeld,
K., Ferrea, E., ... & Berdondini, L. (2013, June).
Sensing and actuating electrophysiological activity on
brain tissue and neuronal cultures with a high-density
CMOS-MEA. In 2013 Transducers & Eurosensors
XXVII: The 17th International Conference on Solid-
State Sensors, Actuators and Microsystems
(Transducers & Eurosensors XXVII) (pp. 752-755).
IEEE.
Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C.,
Brederlow, R., Holzapfl, B., ... & Gabl, R. (2003). A
128× 128 CMOS biosensor array for extracellular
recording of neural activity. IEEE Journal of Solid-
State Circuits, 38(12), 2306-2317.
Park, C. H., & Chung, I. Y. (2016). Modeling of Electrolyte
Thermal Noise in Electrolyte-Oxide-Semiconductor
Field-Effect Transistors. Journal of Semiconductor
Technology and Science, 16(1), 107.
Wang, S., Garakoui, S. K., Chun, H., Salinas, D. G., Sijbers,
W., Putzeys, J., ... & Lopez, C. M. (2019). A Compact
Quad-Shank CMOS Neural Probe with 5,120
Addressable Recording Sites and 384 Fully Differential
Parallel Channels. IEEE transactions on biomedical
circuits and systems, 13(6), 1625-1634.
Lopez, C. M., Chun, H. S., Wang, S., Berti, L., Putzeys, J.,
Van Den Bulcke, C., ... & Van Helleputte, N. (2018). A
multimodal CMOS MEA for high-throughput
intracellular action potential measurements and
impedance spectroscopy in drug-screening
applications. IEEE Journal of Solid-State Circuits,
53(11), 3076-3086.