Chollet, F. et al. (2015). Keras. https://keras.io.
Colque, R. M., Caetano, C., de Melo, V. H. C., Chavez,
G. C., and Schwartz, W. R. (2018). Novel anoma-
lous event detection based on human-object interac-
tions. In VISIGRAPP (5: VISAPP), pages 293–300.
Colque, R. V. H. M., Caetano, C., and Schwartz, W. R.
(2015). Histograms of optical flow orientation and
magnitude to detect anomalous events in videos. In
Conference on Graphics, Patterns and Images (SIB-
GRAPI).
Cong, Y., Yuan, J., and Liu, J. (2011). Sparse reconstruction
cost for abnormal event detection. In CVPR 2011.
Dee, H. M. and Velastin, S. A. (2008). How close are we to
solving the problem of automated visual surveillance?
Machine Vision and Applications.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
dos Santos, F. P., Ribeiro, L. S., and Ponti, M. A.
(2019). Generalization of feature embeddings trans-
ferred from different video anomaly detection do-
mains. Journal of Visual Communication and Image
Representation, 60:407–416.
Dos Santos, F. P., Zor, C., Kittler, J., and Ponti, M. A.
(2020). Learning image features with fewer labels
using a semi-supervised deep convolutional network.
Neural Networks.
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
(2016). Deep learning, volume 1. MIT press Cam-
bridge.
Haering, N., Venetianer, P. L., and Lipton, A. (2008). The
evolution of video surveillance: an overview. Machine
Vision and Applications.
Hu, X., Hu, S., Zhang, X., Zhang, H., and Luo, L. (2014).
Anomaly detection based on local nearest neighbor
distance descriptor in crowded scenes. The Scientific
World Journal, 2014.
Kim, J. and Grauman, K. (2009). Observe locally, infer
globally: A space-time mrf for detecting abnormal
activities with incremental updates. In 2009 IEEE
Conference on Computer Vision and Pattern Recog-
nition(CVPR).
Kornblith, S., Shlens, J., and Le, Q. V. (2019). Do better
imagenet models transfer better? In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2661–2671.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems 25.
Lee, D.-g., Member, S., Suk, H.-i., and Park, S.-k. (2015).
Motion Influence Map for Unusual Human Activity
Detection and Localization in Crowded Scenes. Cir-
cuits and Systems for Video Technology, IEEE Trans-
actions on, 8215.
Li, N., Wu, X., Xu, D., Guo, H., and Feng, W. (2015).
Spatio-temporal context analysis within video vol-
umes for anomalous-event detection and localization.
Neurocomputing.
Li, W., Mahadevan, V., and Vasconcelos, N. (2014).
Anomaly detection and localization in crowded
scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence.
Lu, C., Shi, J., and Jia, J. (2013). Abnormal event detection
at 150 fps in matlab. In Proceedings of the 2013 IEEE
International Conference on Computer Vision, ICCV
’13.
Mabrouk, A. B. and Zagrouba, E. (2018). Abnormal behav-
ior recognition for intelligent video surveillance sys-
tems: A review. Expert Systems with Applications,
91:480–491.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2010). Anomaly detection in crowded scenes. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 1975–1981.
Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal
crowd behavior detection using social force model. In
CVPR.
Muja, M. and Lowe, D. G. FLANN: Fast Library for Ap-
proximate Nearest Neighbors.
Muja, M. and Lowe, D. G. (2014). Scalable nearest neigh-
bor algorithms for high dimensional data. Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on, 36.
Muthusenthil, B. and Kim, H. S. (2018). CCTV Surveil-
lance System, attacks and design goals”. Interna-
tional Journal of Electrical and Computer Engineer-
ing, 8(4):2072.
Nazare, T. S., de Mello, R. F., da Costa, G. B. P., and Ponti,
M. A. (2018a). Color quantization in transfer learning
and noisy scenarios: An empirical analysis using con-
volutional networks. In 2018 31st SIBGRAPI Confer-
ence on Graphics, Patterns and Images (SIBGRAPI).
Nazare, T. S., de Mello, R. F., and Ponti, M. A. (2018b). Are
pre-trained cnns good feature extractors for anomaly
detection in surveillance videos? arXiv preprint
arXiv:1811.08495.
Park, H., Noh, J., and Ham, B. (2020). Learning memory-
guided normality for anomaly detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14372–14381.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Ponti, M., Nazare, T. S., and Kittler, J. (2017a). Optical-
flow features empirical mode decomposition for mo-
tion anomaly detection. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP).
Ponti, M. A., Ribeiro, L. S. F., Nazare, T. S., Bui, T.,
and Collomosse, J. (2017b). Everything you wanted
to know about deep learning for computer vision but
were afraid to ask. In 2017 30th SIBGRAPI con-
ference on graphics, patterns and images tutorials
(SIBGRAPI-T).
Investigating 3D Convolutional Layers as Feature Extractors for Anomaly Detection Systems Applied to Surveillance Videos
761