ACKNOWLEDGMENTS
This work has been supported by the VRR research
fund from the Tunisian Ministry of Higher Education
and Scientific Research that is gratefully acknowl-
edged. The authors would like also to thank our in-
dustrial partner “Enova Robotics” for providing ac-
cess to the PGTLP dataset.
REFERENCES
Arthur, D. and Vassilvitskii, S. (2006). k-means++: the ad-
vantages of careful seeding. Technical report, Stan-
ford.
Bulan, O., Kozitsky, V., Ramesh, P., and Shreve, M. (2017).
Segmentation-and annotation-free license plate recog-
nition with deep localization and failure identification.
ITS, 18(9):2351–2363.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
ML, 20(3):273–297.
Girshick, R. (2015). Fast R-CNN. In CVPR, pages 1440–
1448.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, pages 580–587.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask R-CNN. In ICCV, pages 2961–2969.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385.
Henry, C., Ahn, S. Y., and Lee, S. (2020). Multinational
license plate recognition using generalized character
sequence detection. IEEE Access, 8:35185–35199.
Hsu, G.-S., Ambikapathi, A., Chung, S.-L., and Su, C.-P.
(2017). Robust license plate detection in the wild. In
AVSS, pages 1–6.
Hsu, G.-S., Chen, J.-C., and Chung, Y.-Z. (2012).
Application-oriented license plate recognition. VT,
62(2):552–561.
Kendall, A., Badrinarayanan, V., and Cipolla, R. (2015).
Bayesian SegNet: model uncertainty in deep convolu-
tional encoder-decoder architectures for scene under-
standing. arXiv preprint arXiv:1511.02680.
Kessentini, Y., Besbes, M. D., Ammar, S., and Chabbouh,
A. (2019). A two-stage deep neural network for multi-
norm license plate detection and recognition. ESA,
136:159–170.
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). 2012
AlexNet. In NIPS, pages 1–9.
Ktata, S., Khadhraoui, T., Benzarti, F., and Amiri, H.
(2015). Tunisian license plate number recognition.
PCS, 73:312–319.
Latha, C. and Chakravarthy, G. (2012). An improved
Bernsen algorithm approaches for license plate recog-
nition. IOSR, 3(4):01–05.
Li, H. and Shen, C. (2016). Reading car license plates us-
ing deep convolutional neural networks and LSTMs.
arXiv preprint arXiv:1601.05610.
Li, H., Wang, P., You, M., and Shen, C. (2018). Reading
car license plates using deep neural networks. IVC,
72:14–23.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In ICCV,
pages 2980–2988.
Meng, A., Yang, W., Xu, Z., Huang, H., Huang, L., and
Ying, C. (2018). A robust and efficient method for
license plate recognition. In ICPR, pages 1713–1718.
Min, W., Li, X., Wang, Q., Zeng, Q., and Liao, Y. (2019).
New approach to vehicle license plate location based
on new model YOLO-L and plate pre-identification.
IP, 13(7):1041–1049.
Omar, N., Sengur, A., and Al-Ali, S. G. S. (2020). Cascaded
deep learning-based efficient approach for license
plate detection and recognition. ESA, 149:113280.
Pustokhina, I. V., Pustokhin, D. A., Rodrigues, J. J., Gupta,
D., Khanna, A., Shankar, K., Seo, C., and Joshi, G. P.
(2020). Automatic vehicle license plate recognition
using optimal K-Means with convolutional neural net-
work for intelligent transportation systems. IEEE Ac-
cess.
Rafique, M. A., Pedrycz, W., and Jeon, M. (2018). Vehi-
cle license plate detection using region-based convo-
lutional neural networks. SC, 22(19):6429–6440.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: unified, real-time object
detection. In CVPR, pages 779–788.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. In CVPR, pages 7263–7271.
Redmon, J. and Farhadi, A. (2018). Yolov3: an incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-
CNN: towards real-time object detection with region
proposal networks. In NIPS, pages 91–99.
Safie, S., Azmi, N. M. A. N., Yusof, R., Yunus, M. R. M.,
Sayuti, M. F. Z. C., and Fai, K. K. (2019). Object
localization and detection for real-time automatic li-
cense plate detection (ALPR) system using RetinaNet
algorithm. In SAI, pages 760–768.
Selmi, Z., Halima, M. B., and Alimi, A. M. (2017). Deep
learning system for automatic license plate detection
and recognition. In ICDAR, volume 1, pages 1132–
1138.
Selmi, Z., Halima, M. B., Pal, U., and Alimi, M. A. (2020).
DELP-DAR system for license plate detection and
recognition. PRL, 129:213–223.
Silva, S. M. and Jung, C. R. (2017). Real-time Brazilian li-
cense plate detection and recognition using deep con-
volutional neural networks. In CGPI, pages 55–62.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,
A., et al. (2014). Going deeper with convolutions.
arXiv preprint arXiv:1409.4842.
Xie, L., Ahmad, T., Jin, L., Liu, Y., and Zhang, S. (2018).
A new cnn-based method for multi-directional car li-
cense plate detection. ITS, 19(2):507–517.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and un-
derstanding convolutional networks. In ECCV, pages
818–833.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
668