Chollet, F. et al. (2015). Keras. https://github.com/ fchol-
let/keras, Sidst set 30/01/2020.
Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015).
Fast and accurate deep network learning by exponen-
tial linear units (elus).
Cocosco, C. A., Zijdenbos, A. P., and Evans, A. C. (2003).
A fully automatic and robust brain mri tissue classifi-
cation method. Medical image analysis, 7(4):513-527
Daliri, R., M. (2012). Automated diagnosis of alzheimer
disease using the scale-invariant feature transforms
in magnetic resonance images. J Med Syst, 36:995–
1000.
Fonov, V., Evans, A., McKinstry, R., Almli, C., and
Collins, D. (2009). Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood.
NeuroImage, 47:S102. Organization for Human Brain
Mapping 2009 Annual Meeting.
Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McK-
instry, R. C., and Collins, D. L. (2011). Unbiased
average age-appropriate atlases for pediatric studies.
NeuroImage, 54(1):313 – 327.
Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden,
W. I., Sanchez, I. C., Litjens, G., de Leeuw, E. F., van
Ginneken, B., Marchiori, E., and Platel, B. (2017a).
Location sensitive deep convolutional neural networks
for segmentation of white matter hyperintensities. Sci-
ence Reports, 7.
Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer,
N., Marchiori, E., Pesteie, M., Guttmann, R. C.,
de Leeuw, F., Tempany, C., van Ginneken, B., Fe-
dorov, A., Abolmaesumi, P., Platel, B., and Wells,
M. W. (2017b). Transfer learning for domain adapta-
tion in mri: application in brain lesion segmentation.
MICCAI 2017, Part III. LNCS, 10435:516–524.
Giorgio, A. and De Stefano, N. (2013). Clinical use of brain
volumetry. Journal of Magnetic Resonance Imaging,
37(1):1–14.
Gorgolewski, K. J., Esteban, O., Burns, C., Ziegler, E.,
Pinsard, B., Madison, C., Waskom, M., Ellis, D. G.,
Clark, D., Dayan, M., Manh
˜
aes-Savio, A., Notter,
M. P., Johnson, H., Dewey, B. E., Halchenko, Y. O.,
Hamalainen, C., Keshavan, A., Clark, D., Huntenburg,
J. M., Hanke, M., Nichols, B. N., Wassermann, D.,
Eshaghi, A., Markiewicz, C., Varoquaux, G., Acland,
B., Forbes, J., Rokem, A., Kong, X.-Z., Gramfort, A.,
Kleesiek, J., Schaefer, A., Sikka, S., Perez-Guevara,
M. F., Glatard, T., Iqbal, S., Liu, S., Welch, D., Sharp,
P., Warner, J., Kastman, E., Lampe, L., Perkins, L. N.,
Craddock, R. C., K
¨
uttner, R., Bielievtsov, D., Geisler,
D., Gerhard, S., Liem, F., Linkersd
¨
orfer, J., Margulies,
D. S., Andberg, S. K., Stadler, J., Steele, C. J., Brod-
erick, W., Cooper, G., Floren, A., Huang, L., Gonza-
lez, I., McNamee, D., Papadopoulos Orfanos, D., Pell-
man, J., Triplett, W., and Ghosh, S. (2016). Nipype: a
flexible, lightweight and extensible neuroimaging data
processing framework in Python. 0.12.0-rc1.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification.
Jack, R. C., O’Brien, P. C., Rettman, D. W. and, S. M. M.,
Xu, Y., Muthupillai, R., Manduca, A., Avula, R., and
Erickson, B. J. (2001). Flair histogram segmentation
for measurement of leukoaraiosis volume. J. Magn.
Reson. Imaging, 14(6):668–676.
Jin, D., Xu, Z., Harrison, A. P., and Mollura, D. J. (2018).
White matter hyperintensity segmentation from t1 and
flair images using fully convolutional neural networks
enhanced with residual connections. In 2018 IEEE
15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 1060–1064. IEEE.
Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. International Conference on
Learning Representations.
Kuijf, H. J., Biesbroek, J. M., De Bresser, J., Heinen,
R., Andermatt, S., Bento, M., Berseth, M., Belyaev,
M., Cardoso, M. J., Casamitjana, A., et al. (2019).
Standardized assessment of automatic segmentation
of white matter hyperintensities and results of the
wmh segmentation challenge. IEEE transactions on
medical imaging, 38(11):2556–2568.
Li, H., Jiang, G., Zhang, J., Wang, R., Wang, Z., Zheng,
W.-S., and Menze, B. (2018a). Fully convolutional
network ensembles for white matter hyperintensities
segmentation in mr images. NeuroImage, 183:650–
665.
Li, H., Jiang, G., Zhang, J., Wang, R., Wang, Z., Zheng,
W.-S., and Menze, B. (2018b). Fully convolutional
network ensembles for white matter hyperintensities
segmentation in mr images. NeuroImage, 183:650 –
665.
Li, H., Zhang, J., Muehlau, M., Kirschke, J., and Menze,
B. (2018c). Multi-scale convolutional-stack aggrega-
tion for robust white matter hyperintensities segmen-
tation. In International MICCAI Brainlesion Work-
shop, pages 199–207. Springer.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully con-
volutional networks for semantic segmentation.
Lowekamp, B., Chen, D., Ibanez, L., and Blezek, D. (2013).
The design of simpleitk. Frontiers in neuroinformat-
ics, 7:45.
McKinney, W. et al. (2010). Data structures for statisti-
cal computing in python. In Proceedings of the 9th
Python in Science Conference, volume 445, pages 51–
56. Austin, TX.
Microsoft (2020). Nc-series. https://docs.microsoft.com/
en-us/azure/virtual-machines/nc-series, Sidst set
02/03/2020.
Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-
net: Fully convolutional neural networks for volumet-
ric medical image segmentation.
Morel, B., Xu, Y., Virzi, A., G’eraud, T., Adamsbaum, C.,
and Bloch, I. (2016). A challenging issue: detection
of white matter hyperintensities on neonatal brain mri.
Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology So-
ciety (EMBC), page 93–96.
Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trel-
gol Publishing USA.
Ronneberger, O., Fischer, P., and Brox, T. (2015a). U-
net: Convolutional networks for biomedical image
segmentation. International Conference on Medical
Automatic Brain White Matter Hypertinsities Segmentation using Deep Learning Techniques
251