trying to facilitate low-cost, robust assessment of PD
using readily available means. In this sense we are
working on extending these findings on the PVI
database.
ACKNOWLEDGEMENTS
This work is being funded by grants TEC2016-
77791-C4-4-R from the Government of Spain, and
CENIE_TECA-PARK_55_02 INTERREG V-A
Spain – Portugal (POCTEP).
REFERENCES
Alku, P., Murtola, T., Malinen, J., Kuortti, J., Story, B.,
Airaksinen, M., Salmi, M., Vilkman, E., Geneid, A.,
2019. OPENGLOT-An open environment for the
evaluation of glottal inverse filtering, Speech
Communication 107 38-47, doi:
10.1016/j.specom.2019.01.005
Arora, S., Baghai-Rivary, L., and Tsanas, A., 2019.
Developing a large scale population screening tool for
the assessment of Parkinson’s disease using telephone-
quality voice. Journal of the Acoustical Society of
America, Vol. 145, pp. 2871-2884.
Brabenec, L., Mekyska, J., Galaz, Z., and Rektorova, I.,
2017. Speech disorders in Parkinson's disease: early
diagnostics and effects of medication and brain
stimulation. J. Neural Transm., vol. 124:3, pp. 303–
334.
Cover, T. M. and Thomas, J. A., 2006. Elements of
information theory, Wiley, New York.
Dauer, W. and Przedborski S., 2003. Parkinson's disease:
Mechanisms and models. Neuron, vol. 39, pp. 889–909
Dimitriadis, D., Potamianos, A., and Maragos, P., 2009. A
comparison of the Squared Energy and Teager-Kaiser
Operators for Short-Term Energy Estimation in
Additive Noise. IEEE Trans. on Sig. Proc., vol. 57, No.
7, pp. 2569-2581.
De Lau, L. M. and Breteler, M. M., 2006. Epidemiology of
Parkinson’s disease. The Lancet Neurology 5, pp. 525–
535.
Duffy, J. R., 2013. Motor Speech Disorders, Elsevier, River
Lane, St. Louis, Missouri, US.
Gómez, A., Palacios, D., Ferrández, J. M., Mekyska, J.,
Álvarez, A., and Gómez, P., 2019. A Methodology to
Differentiate Parkinson’s Disease and Aging Speech
Based on Glottal Flow Acoustic Analysis. Int. Journal
of Neural Systems, Vol. 30, 205558.
Harrison, E. C., Horin, A. P., and Earhart, G. M., 2019.
Mental Singing Reduces Gait Variability More than
Music Listening for Healthy Older Adults and People
With Parkinson Disease. JNPT, Vol. 43, 2019, pp. 204-
211.
Karlsson, F., Schalling, E., Laakso, K., Johansson, K. and
Hartelius, L., Assessment of speech impairment in
patients with Parkinson’s disease from acoustic
quantifications of oral diadochokinetic sequences.
Journal of the Acoustical Society of America, vol. 147,
pp. 839-851.
Palacios, D., Meléndez, G., López, A., Lázaro, C., Gómez,
A., and Gómez, P., 2020. MonParLoc: A Speech-
Based System for Parkinson’s Disease Analysis and
Monitoring. IEEE Access, vol. 8, pp. 188243-188255
doi: 10.1109/ACCESS.2020.3031646.
Parkinson, J., 1817. An Essay on the Shaking Palsy. J.
Neuropsychiatry Clin. Neurosci, Vol. 14:2 pp. 223-236.
Ricciardi et al., 2016 (Re-edited in Neuropsychiatry
Classics from the 1817 monograph, by Sherwood,
Neely and Jones).
Ricciardi, L., Ebreo, M., Graziosi, A., Barbuto, M.,
Sorbera, C., Morgante, L., and Morgante, F., 2016.
Speech and gait in Parkinson’s disease: When rhythm
matters. Park. Relat. Disord., vol. 32, pp. 42–47.
Simard, R. and L’Ecuyer, P., 2011. Computing the Two-
Sided Kolmogorov-Smirnov Distribution. Journal of
Statistical Software, Vol. 39:11, pp.
Tsanas, A., 2012. Accurate telemonitoring of Parkinson’s
disease symptom severity using nonlinear speech signal
processing and statistical machine leaning. PhD.
Thesis, U. of Oxford, U.K., June 2012.
Ziegler, W., 2002. Task-Related Factors in Oral Motor
Control: Speech and Oral Diadochokinesis in
Dysarthria and Apraxia of Speech. Brain and Language,
vol. 80, pp. 556-575.