turn leads to a modulation of the light intensity.
Movements in the FOS can be recorded by using an
interferometric measuring circuit. One of the
simplest devices of such a type can be considered a
fiber-optic end interferometer (FOEI). During using
quartz single-mode fiber and laser with emission
wavelength of 1.55 µm in FOEI, range of detected
linear motion of the mirror relative to the end face of
the optical fiber is in the range from 0.000025 µm to
640 µm, with an accuracy of ±0.000025 µm.
Moreover, there are methods for registering both
vibrations and displacement of surfaces using laser
radiation that directly probes a biological object. For
example, in work (Casaccia S. et al., 2015) describes
the technique of laser Doppler myography (LDM),
which is used as a non-contact method for
measuring the signal of mechanomyography (MMG)
from the biceps of a shoulder. The LDM signal was
measured by using a Polytec PDV100 laser Doppler
vibrometer, which uses a laser beam with a
wavelength of 633 nm, which corresponds to the
second class of the laser equipment (harmless to the
eye). Polytec PDV100 obtains the following
technical characteristics: a wide range of
measurement parameters of frequency fluctuations
from infra-low 0.05 Hz to ultrasonic 22 kHz,
measurement accuracy ±0.05 mm/s.
The methods described above and our linear
axisymmetric model will allow us to measure linear
displacements in the necessary range of length units.
CONFLICT OF INTEREST
The authors declare that they have no conflict of
interest.
REFERENCES
Abegao Pinto L., Willekens K., Van Keer K. et al., 2016.
Ocular blood flow in glaucoma. the Leuven Eye
Study. Acta Ophthalmol. 94, pp.592–598. doi:
10.1111/aos.12962.
Casaccia S., Scalise L., 2015. Non-contact assessment of
muscle contraction: Laser Doppler Myography. IEEE
International Symposium on Medical Measurements
and Applications (MeMeA 2015) Proceedings,
pp.453–467. doi: 10.1109/MeMeA.2015.7145276.
Geyer O., Neudorfer M., Snir T., et al., 1999. Pulsatile
ocular blood flow in diabetic retinopathy. Acta.
Ophthalmol. Scand. 5, pp.522–525, doi: 10.1034/j.16
00-0420.1999.770507.x.
Kiseleva A.A., Luzhnov P.V., Shamaev D.M., 2020.
Verification of Mathematical Model for Bioimpedance
Diagnostics of the Blood Flow in Cerebral Vessels.
Advances in Intelligent Systems and Computing, 902,
pp.251-259. doi: 10.1007/978-3-030-12082-5_23
Langham M.E., Farell R.A., O’Brien V. et al., 1989.
Blood flow in the human eye. Acta Opthalmol. pp.9–
13. doi: 10.1111/j.1755-3768.1989.tb07080.x.
Luzhnov P. V., Kazakov S. B., Davydova I. D., 2020.
Stand Development for Modeling and Study of Ocular
Blood Filling Oscillation. 2020 Ural Symposium on
Biomedical Engineering, Radioelectronics and
Information Technology (USBEREIT), pp.211–214.
doi: 10.1109/USBEREIT48449.2020.9117773.
Mori F., Konno S., Hikichi T., et al., 2001. Pulsatile ocular
blood flow study: decreases in exudative age related
macular degeneration. Br J Ophthalmol. 5, pp.531–
533. doi: 10.1136/bjo.85.5.531.
Schmetterer L., Kiel J. Ocular Blood Flow. Springer,
2012.
Shamaev D.M., Luzhnov P.V., Iomdina E.N., 2017.
Modeling of ocular and eyelid pulse blood filling in
diagnosing using transpalpebral rheoophthalmo-
graphy. IFMBE Proceedings 65, pp.1000–1003. doi:
10.1007/978-981-10-5122-7_250
Tultseva S. N., Titarenko A. I., Rukhovets A. G., 2016.
Characteristics of systemic and regional
hemodynamics in ischemic retinal vein occlusion in
young and middle-aged adults. Regionarnoe
krovoobrashchenie i mikrocirkulyaciya, 2(58), pp.24–
31. doi: 10.24884/1682-6655-2016-15-2-24-31.
Tultseva S.N., Titarenko A. I., Rukhovets A. G., 2017.
Eye hemodynamics in young and middle-aged patients
with retinal vein occlusion. The Scientific Notes of the
I. P. Pavlov St. Petersburg State Medical University,
24(4), pp.29–34. doi: 10.24884/1607-4181-2017-24-4-
29-34.
Zhu T. et al., 2012. In-line fiber optic interferometric
sensors in single-mode fibers. Sensors, 12, pp.10430–
10449. doi: 10.3390/s120810430.