J
´
egou, H., Douze, M., Schmid, C., and P
´
erez, P. (2010). Ag-
gregating local descriptors into a compact image rep-
resentation. In CVPR 2010 - 23rd IEEE Conference on
Computer Vision & Pattern Recognition, pages 3304–
3311.
Jolliffe, I. T. (2002). Principal component analysis. 2nd ed.
New-York: Springer-Verlag.
Jun, H., Ko, B., Kim, Y., Kim, I., and Kim, J. (2019). Com-
bination of multiple global descriptors for image re-
trieval. arXiv preprint arXiv:1903.10663.
Kordopatis-Zilos, G., Papadopoulos, S., Patras, I., and
Kompatsiaris, Y. (2017). Near-duplicate video re-
trieval by aggregating intermediate cnn layers. In Mul-
tiMedia Modeling, pages 251–263.
Lin, T.-Y. and Maji, S. (2015). Visualizing and understand-
ing deep texture representations. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2791–2799.
Lin, T.-Y., RoyChowdhury, A., and Maji, S. (2015). Bilin-
ear cnn models for fine-grained visual recognition. In
Proceedings of the 2015 IEEE International Confer-
ence on Computer Vision (ICCV).
Liu, L., Chen, J., Fieguth, P. W., Zhao, G., Chellappa, R.,
and Pietikainen, M. (2019). From bow to cnn: Two
decades of texture representation for texture classi-
fication. International Journal of Computer Vision,
127(1):74–109.
Mallikarjuna, P., Targhi, A. T., Fritz, M., Hayman, E., Ca-
puto, B., and Eklundh, J.-O. (2006). The kth-tips 2
database.
Nanni, L., Ghidoni, S., and Brahnam, S. (2017). Hand-
crafted vs. non-handcrafted features for computer vi-
sion classification. Pattern Recognition, 71:158 – 172.
Qu, Y., Lin, L., Shen, F., Lu, C. B., Wu, Y., Xie, Y., and
Tao, D. (2016). Joint hierarchical category structure
learning and large-scale image classification. IEEE
Transactions on Image Processing, 26:4331–4346.
Quan, Y., Xu, Y., Sun, Y., and Luo, Y. (2014). Lacunarity
analysis on image patterns for texture classification. In
2014 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 160–167.
Schonberger, J. L., Hardmeier, H., Sattler, T., and Pollefeys,
M. (2017). Comparative evaluation of hand-crafted
and learned local features. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6959–6968.
Sharan, L., Rosenholtz, R., and Adelson, E. H. (2010). Ma-
terial perception: What can you see in a brief glance?
volume 14.
Simonyan, K. and Zisserman, A. (2015). Very deep convo-
lutional networks for large-scale image recognition. in
Proc. Int. Conf. Learn. Representations.
Song, Y., Zhang, F., Li, Q., Huang, H., ODonnell, L. J.,
and Cai, W. (2017). Locally-transferred fisher vectors
for texture classification. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 4922–
4930.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the impact
of residual connections on learning. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelli-
gence. AAAI Press.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Computer Vision and Pattern Recognition (CVPR).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–
2826.
Tzelepi, M. and Tefas, A. (2018). Deep convolutional learn-
ing for content based image retrieval. Neurocomput-
ing, 275:2467 – 2478.
Varma, M. and Zisserman, A. (2005). A statistical approach
to texture classification from single images. Interna-
tional Journal of Computer Vision, 62(1–2):61–81.
Wang, K., Bichot, C.-E., Li, Y., and Li, B. (2017). Local
binary circumferential and radial derivative pattern for
texture classification. Pattern Recogn., 67(C).
Yang, B., Yan, J., Lei, Z., and Li, S. Z. (2015). Convolu-
tional channel features for pedestrian, face and edge
detection. ICCV, abs/1504.07339.
Yang, W., Wang, K., and Zuo, W. (2012). Neighborhood
component feature selection for high-dimensional
data. JCP, 7:161–168.
Yang Song, Weidong Cai, Qing Li, Fan Zhang, Feng, D. D.,
and Huang, H. (2015). Fusing subcategory probabil-
ities for texture classification. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 4409–4417.
Zhang, H., Xue, J., and Dana, K. (2017). Deep ten: Tex-
ture encoding network. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Zheng, L., Zhao, Y., Wang, S., Wang, J., and Tian, Q.
(2016). Good practice in CNN feature transfer. CoRR,
abs/1604.00133.
Multi-layer Feature Fusion and Selection from Convolutional Neural Networks for Texture Classification
581