few of these are recognized together. This is due to
the fact that ambiguous emotions share common
characteristics, i.e., there is no a prototypical
representation of these emotions, reason why they
cannot be easily differentiated when recognized
together.
REFERENCES
Alessandrini, M., Micarelli, A., Viziano, A., Pavone, I.,
Costantini, G., Casali, D., Paolizzo, F., Saggio, G.
(2017). Body-worn triaxial accelerometer coherence
and reliability related to static posturography in
unilateral vestibular failure. Acta
Otorhinolaryngologica Italica, 37(3).
Asci, F., Costantini, G., Di Leo, P., Zampogna, A.,
Ruoppolo, G., Berardelli, A., Saggio, G., & Suppa, A.
(2020). Machine-Learning Analysis of Voice Samples
Recorded through Smartphones: The Combined Effect
of Ageing and Gender. Sensors, 20(18), 5022.
Austermann, A., Esau, N., Kleinjohann, L., Kleinjohann,
B.. (2005). Prosody based emotion recognition for
MEXI. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1138–1144.
Borchert, M., Dusterhoft, A. (2005). Emotions in speech-
experiments with prosody and quality features in
speech for use in categorical and dimensional emotion
recognition environments. IEEE Proceedings of
NLPKE, 147–151.
Busso, C., Bulut, M., Narayanan, S. S., (2012). Toward
effective automatic recognition systems of emotion in
speech. In: J. Gratch - S. Marsella (Eds.), Social
emotions in nature and artifact: emotions in human and
human-computer interaction, 110–127.
Chateau, N., Maffiolo, V., Blouin, C., (2004). Analysis of
emotional speech in voice mail messages: The
influence of speakers’ gender. International
Conference on Speech and Language Processing
(ICSLP).
Clavel, C., Vasilescu, I., Devillers, L., Ehrette, T., Richard,
G., Vasilescu, I., Devillers, L., Ehrette, T., Richard, G.,
(2006a). Fear-type emotions of the safe corpus:
annotation issues. Proc. 5th Int. Conf. on Language
Resources and Evaluation (LREC).
Clavel, C., Vasilescu, I., Richard, G., Devillers, L., (2006b).
Voiced and Unvoiced content of fear-type emotions in
the SAFE Corpus. Speech Prosody, Dresden–to be
published.
Costantini, G., Todisco, M., Perfetti, R., Basili, R., &
Casali, D. (2010a). SVM Based Transcription System
with Short-Term Memory Oriented to Polyphonic
Piano Music. Mediterranean Electrotechnical
Conference (MELECON) 201
Costantini, Giovanni, Casali, D., & Todisco, M. (2010b).
An SVM based classification method for EEG signals.
Proceedings of the 14th WSEAS international
conference on Circuits, 107–109.
Costantini, G., Iaderola, I., Paoloni, A., Todisco, M. (2014).
EMOVO Corpus: An Italian emotional speech
database. LREC.
Cowie, R., Douglas-Cowie, E., Tspatsoulis, N., Votsis, G.,
Kollias, S., Fellenz, W., Taylor, J. G.,(2001). Emotion
recognition in human-computer interaction. IEEE
Signal Processing Magazine, 18 (1), 32–80.
Cowie, R., Cornelius, R. R., (2003). Describing the
emotional states that are expressed in speech. Speech
Communication, 40 (1–2).
Cowie, R., Douglas-Cowie, E., Cox, C., (2005). Beyond
emotion archetypes: databases for emotion modelling
using neural networks. Neural Networks, 18, 371–388.
Cullen, C., Vaughan, B., Kousidis, S., (2008). Emotional
speech corpus construction, annotation and distribution.
Proceedings of the 6th International Conference on
Language Resources and Evaluation.
Ekman, P., (1972). Universals and cultural differences in
facial expressions of emotion. J. Cole (Ed.), Nebraska
Symposium on Motivation, 19, Lincoln University of
Nebraska Press, 207–282.
Ekman, P., (1977). Biological and cultural contributions to
body and facial movement. J. Blacking (Ed.), The
anthropology of the body, Academic Press, London,
39–84.
Ekman, P., (1984). Expression and the nature of emotion.
Approaches to Emotion, 1–25.
Ekman, P., Friesen, W. V., (1971). Constants across
cultures in the face and emotion. Journal of Personality
and Social Psychology, 17 (2), 124–129.
El Ayadi, M., Kamel, M. S., Karray, F.,( 2011). Survey on
speech emotion recognition: Features, classification
schemes, and databases. Patter Recognition, 44.
Eyben, F., Weninger, F., Gross, F., Schuller, B., (2013).
Recent developments in openSMILE, the Munich open-
source multimedia feature extractor. Proceedings of the
21st ACM International Conference on Multimedia,
Barcelona, Spain, 835–838.
Fayyad, U. and K. Irani (1993). Multi-Interval
Discretization of Continuous-Valued Attributes for
Classification Learning. IJCAI .
France, D., Shiavi, R., Silverman, S., Silverman, M.,
Wilkes, D., (2000). Acoustical properties of speech as
indicators of depression and suicidal risk. IEEE
Transactions on Biomedical Engineering, 47 (7).
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I. H. (2009). The WEKA data mining
software: An update. SIGKDD Explorations, 11 (1).
Hermansky, H., & Morgan, N. (1994). RASTA processing
of speech. Speech and Audio Processing, IEEE
Transactions on, 2.
Jiang, D. N., Cai, L. H., (2004). Speech emotion
classification with the combination of statistic features
and temporal features. IEEE International Conference
on Multimedia and Expo (ICME), 3, 1967–1970.
Joshi, D., Zalte, B. M., (2013). Speech emotion recognition:
A review. IOSR Journal of Electronics &
Communication Engineering (JECE), 4 (4), 34–37.