REPRODUCIBILITY
Experiments were performed on a server at the De-
partment of Computer Science at the University of
Porto. Server is a GNU/Linux server with 503GiB
of RAM, 96-core Intel(R) Xeon(R) Gold 6252 CPU
@ 2.10GHz processor.
Datasets and Python code for these experiments
are stored in Github repository: (https://github.com/
ivan-carrera/biostec2021).
REFERENCES
Aggarwal, C. C. (2016). Recommender Systems: The Text-
book. Communications of the ACM. Springer Inter-
national Publishing, NY, USA.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K.,
and Walter, P. (2002). Isolating cells and growing
them in culture. In Molecular Biology of the Cell. 4th
edition. Garland Science.
Ashburn, T. T. and Thor, K. B. (2004). Drug reposition-
ing: identifying and developing new uses for exist-
ing drugs. Nature Reviews Drug Discovery, 3(8):673–
683.
Chen, J., Cheng, G.-H., Chen, L.-P., Pang, T.-Y., and Wang,
X.-L. (2013). Prediction of Chemotherapeutic Re-
sponse in Unresectable Non-small-cell Lung Cancer
(NSCLC) Patients by 3-(4,5-Dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) Assay. Asian Pacific Journal of
Cancer Prevention, 14(5):3057–3062.
Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou,
W., Huang, J., and Tang, Y. (2012). Prediction of
Drug-Target Interactions and Drug Repositioning via
Network-Based Inference. PLoS Computational Biol-
ogy, 8(5):e1002503.
Cruz-Monteagudo, M., Sch
¨
urer, S., Tejera, E., P
´
erez-
Castillo, Y., Medina-Franco, J. L., S
´
anchez-
Rodr
´
ıguez, A., and Borges, F. (2017). Systemic
QSAR and phenotypic virtual screening: chasing
butterflies in drug discovery. Drug Discovery Today,
22(7):994–1007.
Dovrolis, N., Kolios, G., Spyrou, G., and Maroulakou, I.
(2017). Laying in silico pipelines for drug reposition-
ing: a paradigm in ensemble analysis for neurodegen-
erative diseases. Drug Discovery Today, 22(5):805–
813.
Emdadi, A. and Eslahchi, C. (2020). DSPLMF: A Method
for Cancer Drug Sensitivity Prediction Using a Novel
Regularization Approach in Logistic Matrix Factor-
ization. Frontiers in Genetics, 11.
Gao, J., Che, D., Zheng, V. W., Zhu, R., and Liu, Q. (2012).
Integrated QSAR study for inhibitors of hedgehog sig-
nal pathway against multiple cell lines:a collaborative
filtering method. BMC Bioinformatics, 13(1):186.
Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J.,
Davies, M., Hersey, A., Light, Y., McGlinchey, S.,
Michalovich, D., Al-Lazikani, B., and Overington,
J. P. (2012). ChEMBL: a large-scale bioactivity
database for drug discovery. Nucleic Acids Research,
40(D1):D1100–D1107.
Hug, N. (2020). Surprise: A python library for recom-
mender systems. Journal of Open Source Software,
5(52):2174.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix Factor-
ization Techniques for Recommender Systems. Com-
puter, 42(8):30–37.
Liu, H., Zhao, Y., Zhang, L., and Chen, X. (2018). Anti-
cancer Drug Response Prediction Using Neighbor-
Based Collaborative Filtering with Global Effect Re-
moval. Molecular Therapy - Nucleic Acids, 13:303–
311.
Nosengo, N. (2016). Can you teach old drugs new tricks?
Nature, 534(7607):314–316.
Singh, A. P. and Gordon, G. J. (2008). Relational Learning
via Collective Matrix Factorization. In Proceedings
of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08,
page 650–658, New York, NY, USA. Association for
Computing Machinery.
Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W.
(2014). Computational methods in drug discovery.
Pharmacological Reviews, 66(1):334–395.
Strebhardt, K. and Ullrich, A. (2008). Paul Ehrlich’s magic
bullet concept: 100 years of progress. Nature Reviews
Cancer, 8(6):473–480.
Suphavilai, C., Bertrand, D., and Nagarajan, N. (2018). Pre-
dicting Cancer Drug Response using a Recommender
System. Bioinformatics, 34(22):3907–3914.
Tejera, E., Carrera, I., Jimenes-Vargas, K., Armijos-
Jaramillo, V., S
´
anchez-Rodr
´
ıguez, A., Cruz-
Monteagudo, M., and Perez-Castillo, Y. (2019). Cell
fishing: A similarity based approach and machine
learning strategy for multiple cell lines-compound
sensitivity prediction. PLoS ONE, 14(10):1–11.
Wang, A., Lim, H., Cheng, S.-Y., and Xie, L. (2018).
ANTENNA, a Multi-Rank, Multi-Layered Recom-
mender System for Inferring Reliable Drug-Gene-
Disease Associations: Repurposing Diazoxide as a
Targeted Anti-Cancer Therapy. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics,
15(6):1960–1967.
Wang, R., Li, S., Cheng, L., Wong, M. H., and Leung, K. S.
(2019). Predicting associations among drugs, targets
and diseases by tensor decomposition for drug reposi-
tioning. BMC Bioinformatics, 20(S26):628.
Zhang, L., Chen, X., Guan, N.-N., Liu, H., and Li, J.-Q.
(2018). A Hybrid Interpolation Weighted Collabora-
tive Filtering Method for Anti-cancer Drug Response
Prediction. Frontiers in Pharmacology, 9(SEP).
Simple Matrix Factorization Collaborative Filtering for Drug Repositioning on Cell Lines
775