Battleday, R. M., Muller, T., Clayton, M. S., & Cohen
Kadosh, R. (2014). Mapping the mechanisms of
transcranial alternating current stimulation: A pathway
from network effects to cognition. Frontiers in
Psychiatry, 5, 162.
https://doi.org/10.3389/fpsyt.2014.00162
Doidge, N. (2007). The Brain That Changes Itself: Stories
of Personal Triumph from the Frontiers of Brain
Science (1 edition). Viking.
Egiazaryan, G. G., & Sudakov, K. V. (2007). Theory of
Functional Systems in the Scientific School of P.K.
Anokhin. Journal of the History of the Neurosciences,
16(1–2), 194–205.
https://doi.org/10.1080/09647040600602805
Gabis, L., Shklar, B., & Geva, D. (2003). Immediate
influence of transcranial electrostimulation on pain and
beta-endorphin blood levels: An active placebo-
controlled study. American Journal of Physical
Medicine & Rehabilitation, 82(2), 81–85.
https://doi.org/10.1097/00002060-200302000-00001
Generoso, M. B., Taiar, I. T., Garrocini, L. P., Bernardon,
R., Cordeiro, Q., Uchida, R. R., & Shiozawa, P. (2019).
Effect of a 10-day transcutaneous trigeminal nerve
stimulation (TNS) protocol for depression
amelioration: A randomized, double blind, and sham-
controlled phase II clinical trial. Epilepsy & Behavior,
95, 39–42. https://doi.org/10.1016/j.yebeh.2019.03.025
Gerasimenko, Y., Gorodnichev, R., Moshonkina, T.,
Sayenko, D., Gad, P., & Reggie Edgerton, V. (2015).
Transcutaneous electrical spinal-cord stimulation in
humans. Annals of Physical and Rehabilitation
Medicine, 58(4), 225–231.
https://doi.org/10.1016/j.rehab.2015.05.003
Gerasimenko, Y., Gorodnichev, R., Puhov, A.,
Moshonkina, T., Savochin, A., Selionov, V., Roy, R.
R., Lu, D. C., & Edgerton, V. R. (2015). Initiation and
modulation of locomotor circuitry output with multisite
transcutaneous electrical stimulation of the spinal cord
in noninjured humans. Journal of Neurophysiology,
113(3), 834–842.
https://doi.org/10.1152/jn.00609.2014
Kublanov, V., Aftanas, L., Petrenko, T., Danilenko, K.,
Maria, R., Efimtcev, A., Babich, M., Dolganov, A., &
Sokolov, A. (2018). Investigation of the Neuro-
electrostimulation Mechanisms by Means of the
Functional MRI: Case Study: Proceedings of the 11th
International Joint Conference on Biomedical
Engineering Systems and Technologies, 319–324.
https://doi.org/10.5220/0006712203190324
Kublanov, V., Babich, M., & Dolganov, A. (2017).
Principles of Organization and Control of the New
Implementation of the “SYMPATHOCOR-01” Neuro-
electrostimulation Device. 276–282.
http://www.scitepress.org/DigitalLibrary/Publications
Detail.aspx?ID=KKCrNxrMQJs=&t=1
Kublanov, V. S. (2008). A hardware-software system for
diagnosis and correction of autonomic dysfunctions.
Biomedical Engineering, 42(4), 206–212.
Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G.
L., & Corbetta, M. (2009). Learning sculpts the
spontaneous activity of the resting human brain.
Proceedings of the National Academy of Sciences of the
United States of America, 106(41), 17558–17563.
https://doi.org/10.1073/pnas.0902455106
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W.
(2002). Pharmacological approach to the mechanisms
of transcranial DC-stimulation-induced after-effects of
human motor cortex excitability. Brain: A Journal of
Neurology, 125(Pt 10), 2238–2247.
https://doi.org/10.1093/brain/awf238
Mutz, J., Vipulananthan, V., Carter, B., Hurlemann, R., Fu,
C. H. Y., & Young, A. H. (2019). Comparative efficacy
and acceptability of non-surgical brain stimulation for
the acute treatment of major depressive episodes in
adults: Systematic review and network meta-analysis.
BMJ (Clinical Research Ed.), 364, l1079.
https://doi.org/10.1136/bmj.l1079
Neuling, T., Rach, S., Wagner, S., Wolters, C. H., &
Herrmann, C. S. (2012). Good vibrations: Oscillatory
phase shapes perception. NeuroImage, 63(2), 771–778.
https://doi.org/10.1016/j.neuroimage.2012.07.024
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori,
A., Lang, N., Antal, A., Paulus, W., Hummel, F.,
Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008).
Transcranial direct current stimulation: State of the art
2008. Brain Stimulation, 1(3), 206–223.
https://doi.org/10.1016/j.brs.2008.06.004
Nudo, R. J., Plautz, E. J., & Frost, S. B. (2001). Role of
adaptive plasticity in recovery of function after damage
to motor cortex. Muscle & Nerve, 24(8), 1000–1019.
https://doi.org/10.1002/mus.1104
Paltin, D., Tyler, M., & Danilov, Y. (2017). Cognitive
enhancement exciting discovery using trans-lingual
neuro-stimulation. Journal of Neurology and
Neurorehabilitation Research, 02(01).
https://doi.org/10.35841/neurology-
neurorehabilitation.2.1.34-40
Pereira, J. B., Ibarretxe-Bilbao, N., Marti, M.-J., Compta,
Y., Junqué, C., Bargallo, N., & Tolosa, E. (2012).
Assessment of cortical degeneration in patients with
Parkinson’s disease by voxel-based morphometry,
cortical folding, and cortical thickness. Human Brain
Mapping, 33(11), 2521–2534.
https://doi.org/10.1002/hbm.21378
Petrenko, T., Kublanov, V., Retyunskiy, K., &
Sherstobitov, R. (2020). Possibilities of Applying Non-
invasive Multichannel Electrical Stimulation
Technology for Treatment Neuropsychiatric Diseases:
Proceedings of the 13th International Joint Conference
on Biomedical Engineering Systems and Technologies,
421–426. https://doi.org/10.5220/0009377304210426
Shigematsu, T., Fujishima, I., & Ohno, K. (2013).
Transcranial direct current stimulation improves
swallowing function in stroke patients.
Neurorehabilitation and Neural Repair, 27(4), 363–
369. https://doi.org/10.1177/1545968312474116
Tamburin, S., Smania, N., Saltuari, L., Hömberg, V., &
Sandrini, G. (2019). Editorial: New Advances in
Neurorehabilitation. Frontiers in Neurology,
10, 1090.
https://doi.org/10.3389/fneur.2019.01090