rience. Urology, 63(2):297–300.
Brunese, L., Martinelli, F., Mercaldo, F., and Santone, A.
(2020a). Deep learning for heart disease detection
through cardiac sounds. Procedia Computer Science,
176:2202–2211.
Brunese, L., Martinelli, F., Mercaldo, F., and Santone, A.
(2020b). Machine learning for coronavirus covid-19
detection from chest x-rays. Procedia Computer Sci-
ence, 176:2212–2221.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone, A.
(2019a). Formal methods for prostate cancer glea-
son score and treatment prediction using radiomic
biomarkers. Magnetic resonance imaging.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone,
A. (2019b). Radiomic features for medical images
tamper detection by equivalence checking. Procedia
Computer Science, 159:1795–1802.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone,
A. (2020c). An ensemble learning approach for
brain cancer detection exploiting radiomic features.
Computer methods and programs in biomedicine,
185:105134.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone,
A. (2020d). Explainable deep learning for pul-
monary disease and coronavirus covid-19 detection
from x-rays. Computer Methods and Programs in
Biomedicine, 196:105608.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone, A.
(2020e). Formal methods for prostate cancer glea-
son score and treatment prediction using radiomic
biomarkers. Magnetic resonance imaging, 66:165–
175.
Brunese, L., Mercaldo, F., Reginelli, A., and Santone,
A. (2020f). Radiomics for gleason score detection
through deep learning. Sensors, 20(18):5411.
Casolare, R., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). A model checking based proposal for mo-
bile colluding attack detection. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
5998–6000. IEEE.
Casolare, R., Martinelli, F., Mercaldo, F., and Santone, A.
(2020). Malicious collusion detection in mobile en-
vironment by means of model checking. In 2020
International Joint Conference on Neural Networks
(IJCNN), pages 1–6. IEEE.
Choi, Y. and Jung, S.-L. (2020). Efficacy and safety of
thermal ablation techniques for the treatment of pri-
mary papillary thyroid microcarcinoma: a systematic
review and meta-analysis. Thyroid, 30(5):720–731.
De Baere, T. and Deschamps, F. (2014). New tumor abla-
tion techniques for cancer treatment (microwave, elec-
troporation). Diagnostic and interventional imaging,
95(7-8):677–682.
Deng, L., Yu, D., et al. (2014). Deep learning: methods
and applications. Foundations and Trends
R
in Signal
Processing, 7(3–4):197–387.
Heged
¨
us, L., Miyauchi, A., and Tuttle, R. M. (2020). Non-
surgical thermal ablation of thyroid nodules: Not if,
but why, when, and how? Thyroid.
Iadarola, G., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). Formal methods for android banking malware
analysis and detection. In 2019 Sixth International
Conference on Internet of Things: Systems, Manage-
ment and Security (IOTSMS), pages 331–336. IEEE.
Iadarola, G., Martinelli, F., Mercaldo, F., and Santone, A.
(2020). Image-based malware family detection: An
assessment between feature extraction and classifica-
tion techniques. In IoTBDS, pages 499–506.
Milner, R. (1989). Communication and concurrency. PHI
Series in computer science. Prentice Hall.
Morgan, G. J., Clarke, K., Caldarone, C., and Benson,
L. N. (2010). Radiolucent retractor for angiographic
analysis during hybrid congenital cardiac procedures.
The Journal of thoracic and cardiovascular surgery,
140(5):1195–1196.
Raveglia, F., Rizzi, A., De Simone, M., Cioffi, U., Sacrini,
A., and Baisi, A. State of the art in alternative treat-
ments for lung cancer: Thermal ablation therapy.
Sajjadi, A. Y., Mitra, K., and Grace, M. (2011). Ablation
of subsurface tumors using an ultra-short pulse laser.
Optics and Lasers in Engineering, 49(3):451–456.
Song, J. H., Yoo, Y., Song, T.-K., and Chang, J. H. (2013).
Real-time monitoring of hifu treatment using pulse in-
version. Physics in Medicine & Biology, 58(15):5333.
Stirling, C. (1989). An introduction to modal and temporal
logics for ccs. In Yonezawa, A. and Ito, T., editors,
Concurrency: Theory, Language, And Architecture,
volume 491 of LNCS, pages 2–20. Springer.
Thanos, L., Mylona, S., Pomoni, M., Kalioras, V., Zoganas,
L., and Batakis, N. (2004). Primary lung cancer: treat-
ment with radio-frequency thermal ablation. Euro-
pean radiology, 14(5):897–901.
Uchida, T., Nakano, M., Hongo, S., Shoji, S., Nagata, Y.,
Satoh, T., Baba, S., Usui, Y., and Terachi, T. (2012).
High-intensity focused ultrasound therapy for prostate
cancer. International Journal of Urology, 19(3):187–
201.
Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A.,
Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-
Robin, J.-C., Pieper, S., and Aerts, H. J. (2017).
Computational radiomics system to decode the radio-
graphic phenotype. Cancer research, 77(21):e104–
e107.
Zhang, T., Liang, W., Song, Y., Wang, Z., and Zhang, D.
(2020). Us-ct fusion image-guided microwave abla-
tion of lung cancer—-a new mode of image guidance
in lung cancer ablation. ADVANCED ULTRASOUND
IN DIAGNOSIS AND THERAPY, 4(4):343–348.
BIOINFORMATICS 2021 - 12th International Conference on Bioinformatics Models, Methods and Algorithms
194