Dobhal, T., Shitole, V., Thomas, G., & Navada, G. (2015).
Human Activity Recognition using Binary Motion
Image and Deep Learning. Procedia Computer Science,
58, 178–185.
Graph struct. (n.d.). Retrieved from https://www.
topbots.com/graph-convolutional-networks/
História do Taekwondo | Lutas e Artes Marciais. (n.d.).
Retrieved November 11, 2019, from https://lutasartes
marciais.com/artigos/historia-taekwondo
Images, T. C. (2020). Sensor Classification Using
Convolutional Neural, (1).
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
& Muller, P. A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4), 917–963.
Jiang, W., & Yin, Z. (2015). Human activity recognition
using wearable sensors by deep convolutional neural
networks. MM 2015 - Proceedings of the 2015 ACM
Multimedia Conference, 1307–1310.
Kacem, A., Daoudi, M., Amor, B. Ben, Berretti, S., &
Alvarez-Paiva, J. C. (2020). A Novel Geometric
Framework on Gram Matrix Trajectories for Human
Behavior Understanding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(1), 1–14.
Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (n.d.).
A Survey of the Recent Architectures of Deep
Convolutional Neural Networks 1 Introduction, 1–70.
Kong, Y., & Fu, Y. (2018). Human Action Recognition and
Prediction: A Survey. ArXiv, 13(9).
Liu, J., Wang, G., Hu, P., Duan, L. Y., & Kot, A. C. (2017).
Global context-aware attention LSTM networks for 3D
action recognition. Proceedings - 30th IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-Janua, 3671–3680.
LSTM cell Image. (n.d.). Retrieved from
https://www.researchgate.net/profile/Juan_Victores/pu
blication/334360853/figure/fig1/AS:77895544759910
6@1562728859405/The-LSTM-cell-internals.png
Nadig, M. S., & Kumar, S. N. (2015). Measurement of
Velocity and Acceleration of Human Movement for
Analysis of Body Dynamics. International Journal of
Advanced Research in Computer Science &
Technology (IJARCST 2015), 3(3), 2013–2016.
Olah, C. (2015). Understanding LSTM Networks.
Retrieved October 31, 2020, from https://colah.
github.io/posts/2015-08-Understanding-LSTMs/
Pinto, T., Faria, E., Cunha, P., Soares, F., Carvalho, V., &
Carvalho, H. (2018). Recording of occurrences through
image processing in Taekwondo training: First insights.
Lecture Notes in Computational Vision and
Biomechanics, 27, 427–436.
Ren, B., Liu, M., Ding, R., & Liu, H. (2020). A survey on
3d skeleton-based action recognition using learning
method. ArXiv, 1–8.
Ruj, D. P. L., Ryhu, L., Wlph, O., & Wudglwlrqdo, Q. R.
Z. (2019). Human Activity Recognition Using LSTM-
RNN Deep Neural Network Architecture.
Sanchez-caballero, A., Fuentes-jimenez, D., & Losada-
guti, C. (2020). Exploiting the ConvLSTM : Human
Action Recognition using Raw Depth Video-Based
Recurrent Neural Networks, 1–29.
Shahroudy, A. (n.d.). NTU RGB + D : A Large Scale
Dataset for 3D Human Activity Analysis, 1010–1019.
Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019). Two-stream
adaptive graph convolutional networks for skeleton-
based action recognition. Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 2019-June, 12018–12027.
Shi, X., Chen, Z., & Wang, H. (2015). Convolutional
LSTM Network : A Machine Learning Approach for
Precipitation Nowcasting, 1–11.
Simonyan, K., & Zisserman, A. (2015). Very Deep
Convolutional Networks For Large-Scale Image
Recognition, 1–14.
Wang, L., Huynh, D. Q., & Koniusz, P. (2020). A
Comparative Review of Recent Kinect-Based Action
Recognition Algorithms. IEEE Transactions on Image
Processing, 29, 15–28.
Wang, P., Li, W., Ogunbona, P., Wan, J., & Escalera, S.
(2018). RGB-D-based human motion recognition with
deep learning: A survey. Computer Vision and Image
Understanding, 171(April), 118–139.
Wang, Z., & Oates, T. (2015). Encoding time series as
images for visual inspection and classification using
tiled convolutional neural networks. AAAI Workshop -
Technical Report, WS-15-14(January), 40–46.
Yang, C., Yang, C., Chen, Z., Lo, N., & Member, S. (2019).
Multivariate Time Series Data Transformation for
Convolutional Neural Network, 188–192.
Zhang, H. B., Zhang, Y. X., Zhong, B., Lei, Q., Yang, L.,
Du, J. X., & Chen, D. S. (2019). A comprehensive
survey of vision-based human action recognition
methods. Sensors (Switzerland), 19(5), 1–20.
https://doi.org/10.3390/s19051005
Zhang, Y., Zhang, Y., Zhang, Z., Bao, J., & Song, Y.
(2018). Human activity recognition based on time
series analysis using U-Net. Retrieved from
http://arxiv.org/abs/1809.08113
Zhao, R., Wang, K., Su, H., & Ji, Q. (2019). Bayesian graph
convolution LSTM for skeleton based action
recognition. Proceedings of the IEEE International
Conference on Computer Vision, 6881–6891.
Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., &
Xie, X. (2015). Co-occurrence Feature Learning for
Skeleton based Action Recognition using Regularized
Deep LSTM Networks, (i).
Zhuang, Z., & Xue, Y. (2019). Sport-Related Human
Activity Detection and Recognition Using a
Smartwatch. Sensors, 19(22), 5001.
BIODEVICES 2021 - 14th International Conference on Biomedical Electronics and Devices