Lieder, I., Segal, M., Avidan, E., Cohen, A., & Hope, T.
(2019). Learning a faceted customer segmentation for
discovering new business opportunities at Intel. In
Proceedings of the IEEE International Conference on
Big Data, pp. 6136-6138. IEEE.
Han, J., Nandan, N., & Sun, A. (2015). Did You Know? A
Rule-Based Approach to Finding Similar Questions on
Online Health Forums. In Proceedings of the 2015
International Conference on Healthcare Informatics,
pp. 513-514). IEEE.
Hearst, M. A. (1999). Untangling text data mining. In
Proceedings of the 37th Annual meeting of the
Association for Computational Linguistics (pp. 3-10).
James, T. L., Calderon, E. D. V., & Cook, D. F. (2017).
Exploring patient perceptions of healthcare service
quality through analysis of unstructured feedback.
Expert Systems with Applications, 71, 479-492.
Jelodar, H., Wang, Y., Orji, R., & Huang, H. (2020). Deep
sentiment classification and topic discovery on novel
coronavirus or covid-19 online discussions: NLP using
lstm recurrent neural network approach. IEEE Journal
of Biomedical and Health Informatics, vol. 24, no. 10,
pp. 2733-2742
Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining
electronic health records: towards better research
applications and clinical care. Nature Reviews Genetics,
13(6), 395-405.
Ji, Y., Tian, Y., Shen, F., & Tran, J. (2016). Leveraging
MapReduce to efficiently extract associations between
biomedical concepts from large text data.
Microprocessors and Microsystems, 46, 202-210.
Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng,
M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-
III, a freely accessible critical care database. Scientific
Data, 3, 160035.
Kidwai, B., & Nadesh, R. K. (2020). Design and
development of diagnostic Chabot for supporting
primary health care systems. Procedia Computer
Science, 167, 75-84.
Kumari, B. N., & Mahalakshmi, G. S. (2019). A cloud
based knowledge discovery framework, for medicinal
plants from PubMed literature. Informatics in Medicine
Unlocked, 16, 100226.
Martínez, P., Martínez, J. L., Segura-Bedmar, I., Moreno-
Schneider, J., Luna, A., & Revert, R. (2016). Turning
user generated health-related content into actionable
knowledge through text analytics services. Computers
in Industry, 78, 43-56.
Miao, S., Xu, T., Wu, Y., Xie, H., Wang, J., Jing, S., ... &
Shan, T. (2018). Extraction of BI-RADS findings from
breast ultrasound reports in Chinese using deep learning
approaches. International Journal of Medical
Informatics, 119, 17-21.
Paglialonga, A., Riboldi, M., Tognola, G., & Caiani, E. G.
(2017). Automated identification of health apps'
medical specialties and promoters from the store
webpages. In Proceedings of the E-Health and
Bioengineering Conference (EHB), pp. 197-200. IEEE.
Paglialonga, A., Pinciroli, F., Tognola, G., Barbieri, R.,
Caiani, E. G., & Riboldi, M. (2017). e-Health solutions
for better care: Characterization of health apps to
extract meaningful information and support users'
choices. In Proceedings of the 3rd International Forum
on Research and Technologies for Society and Industry
(RTSI) (pp. 1-6). IEEE.
Pendyala, V. S., & Figueira, S. (2017). Automated medical
diagnosis from clinical data. In Proceedings of the
IEEE Third International Conference on Big Data
Computing Service and Applications (BigDataService),
pp. 185-190. IEEE.
Peterson, K. J., Jiang, G., & Liu, H. (2020). A corpus-driven
standardization framework for encoding clinical
problems with HL7 FHIR. Journal of Biomedical
Informatics, 110, 103541.
Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).
Automatic keyword extraction from individual
documents. Text Mining: Applications and Theory, 1,
1-20.
Sarkar, D. (2019). Text analytics with Python: a
practitioner's guide to natural language processing.
Apress.
Spasić, I., Uzuner, Ö., & Zhou, L. (2020). Emerging clinical
applications of text analytics. International Journal of
Medical Informatics, Vol. 134.
Sterling, N. W., Patzer, R. E., Di, M., & Schrager, J. D.
(2019). Prediction of emergency department patient
disposition based on natural language processing of
triage notes. International Journal of Medical
Informatics, 129, 184-188.
Sutar, S. G. (2017). Intelligent data mining technique of
social media for improving health care. In Proceedings
of the 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS), pp. 1356-
1360. IEEE.
Tan, A. H. (1999). Text mining: The state of the art and the
challenges. In Proceedings of the 1999 PAKDD
Workshop on Knowledge Discovery from Advanced
Databases, Vol. 8, pp. 65-70.
Tvardik, N., Kergourlay, I., Bittar, A., Segond, F., Darmoni,
S., & Metzger, M. H. (2018). Accuracy of using natural
language processing methods for identifying
healthcare-associated infections. International Journal
of Medical Informatics, 117, 96-102.
Teng, F., Ma, Z., Chen, J., Xiao, M., & Huang, L. (2020).
Automatic medical code assignment via deep learning
approach for intelligent healthcare. IEEE Journal of
Biomedical and Health Informatics, vol. 24, no. 9, pp.
2506-2515.
van Dijk, W. B., Fiolet, A. T., Schuit, E., Sammani, A.,
Groenhof, T. K. J., van der Graaf, R., ... & Grobbee, D.
E. (2020). Text-mining in electronic healthcare records
can be used as efficient tool for screening and data-
collection in cardiovascular trials: a multicenter
validation study. Journal of Clinical Epidemiology.
https://doi.org/10.1016/j.jclinepi.2020.11.014
Vinod, P., Safar, S., Mathew, D., Venugopal, P., Joly, L. M.,
& George, J. (2020). Fine-tuning the BERTSUMEXT
model for Clinical Report Summarization. In
Proceedings of the 2020 International Conference for
Emerging Technology (INCET) (pp. 1-7). IEEE.