the probability of a credible attack, taking into
account the introduction of additional criteria
𝑃
𝐻
|𝐶
,𝑋
0.5 ∗ 0,21 0,7 ∗ 0.7
0.5 ∗ 0,85
0,75
(5)
When comparing the probabilities of the classical
scheme and the augmented one, we can conclude that
the current model allows more accurate
identification of a possible threat, since another
criterion is added to assess the credibility of the
attack - C_A. Under the query analysis system, any
solution can be installed to determine the query
signature, such as the testcookie-nginx-module
(Testcookie-nginx-module, 2020).
The further scenario is similar to the classic one -
the detection system will display a notification of a
possible attack on the user interface, which allows to
identify a distributed denial-of-service attack at an
early stage, since, as noted earlier, the Bayesian
method allows to minimize the time to analyze the
received traffic and provide the result.
4 CONCLUSIONS
The new equation allows to evaluate the
effectiveness of measures used in order to find the
most appropriate one. In future studies, this equation
will help to evaluate new methods of protection or
existing ones, with some refinements.
This algorithm, in its present form, can be used,
as an auxiliary calculation of distributed DDoS
attack detection probability, in more complex
detection systems as a stand-alone solution, or as an
addition to the existing mechanism for detecting
cyber-attacks (Makaryan, Putyato and Ocheredko,
2020; Putyato et al., 2020).
REFERENCES
Sinkov A.S., Medvedev M.P., Nikolskaya K.YU. Analiz
problemy obnaruzheniya raspredelennyh atak tipa
"Otkaz v obsluzhivanii" // "Nauka nastroyashchego i
budushchego", Mar 2018. S. 148-152.
Moskovskij nauchno-issledovatelskij centr (MNIC)
Gosudarstvennyj Komitet Rossijskoj Federacii po
svyazi i informatizacii. GOST R ISO/MEK 7498-1-99
Informacionnaya tekhnologiya (IT). Vzaimosvyaz
otkrytyh sistem. Bazovaya etalonnaya model. CHast 1.
Bazovaya model // gostrf. 2006. URL:
http://www.gostrf.com/normadata/1/4294818/429481
8276.pdf (Access Date: 14.01.2021).
Behal S., Kumar K. Trends in Validation of DDoS
Research // International Conference on
Computational Modeling and Security (CMS 2016), No.
85, 2016. pp. 7-15.
Chen J., Tang X., Cheng J., Wang F., Xu R. DDoS Attack
Detection Method Based on Network Abnormal
Behavior in big data environment // International
Journal of Computational Science and Engineering,
2020.
Branickij A.A., Kotenko I.V. Analiz i klassifikaciya
metodov obnaruzheniya setevyh atak // trudy spiiran,
2016. pp. 207-244.
Palchevskij E.V., Hristodulo O.I. Razrabotka metoda
samoobucheniya impulsnoj nejronnoj seti dlya
zashchity ot DDoS-atak // Programmnye produkty i
sistemy, No. 3, 2019.
Diyazitdinova (Miftahova) A., Gubareva Yu. Issledovanie
vozmozhnosti metodov iskusstvennogo intellekta pri
raspoznavanii dos/ddos atak // problemy tekhniki i
tekhnologii telekommunikacij. opticheskie tekhnologii
v telekommunikaciyah, 2018. pp. 326-327.
Goldstein, Lampert, Reif , Stahl , Breuel. Bayes Optimal
DDoS Mitigation by Adaptive History-Based IP
Filtering // Seventh International Conference on
Networking, Mar 2008.
Polat, Polat, Cetin. Detecting DDoS Attacks in Software-
Defined Networks Through Feature Selection Methods
and Machine Learning Models // Open Access Journal,
Feb 2020. pp. 1-16.
Vorobeva YU.N., Katasyova D.V., Katasyov A.S.,
Kirpichnikov A.P. Nejrosetevaya model vyyavleniya
ddos-atak // vestnik tekhnologicheskogo universiteta,
Vol. 21, No. 2, 2018. pp. 94-98.
Federalnoe agentstvo po tekhnicheskomu regulirovaniyu i
metrologii. tri podhoda k interpretacii i ocenke
neopredelennosti izmerenij //
https://files.stroyinf.ru/Data2/1/4293766/4293766795.p
df. 2014.
Bahiarov. Teorema Bajesa kak metod opredeleniya atak tipa
otkaz v obsluzhivanii // Simvol nauki, 2018.
REST strasti po 200 [Electrionic resurce] // habr: [Web Site].
[2020]. URL: https://habr.com/ru/post/440900/
Testcookie-nginx-module [Electrionic resurce] // kyprizel:
[Web Site]. [2020]. http://kyprizel.github.io/testcookie-
nginx-module/
Makaryan A.S., Putyato M.M., Ocheredko A.R.
Informacionnye sistemy i tekhnologii v modelirovanii i
upravlenii // Analiz prakticheskoj realizacii
mekhanizmov vyyavleniya kiberatak v siem-sisteme
splunk. YAlta. May 2020. S. 252-256.
Putyato M.M., Makaryan A.S., CHerkasov A.N., Gorin I.G.
Adaptivnaya sistema kompleksnogo obespecheniya
bezopasnosti kak element infrastruktury situacionnogo
centra // Prikaspijskij zhurnal: upravlenie i vysokie
tekhnologii, 2020. pp. 75-84
An Approach to Identifying the Process of Implementing a Distributed Denial of Service Attack based on a Probable Graph Model