Ebner, M. (2009). Engineering of computer vision algo-
rithms using evolutionary algorithms. In Blanc-Talon,
J., Philips, W., Popescu, D., and Scheunders, P., ed-
itors, Advanced Concepts for Intelligent Vision Sys-
tems, pages 367–378, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Ebner, M. (2010). Evolving object detectors with a gpu
accelerated vision system. In Tempesti, G., Tyrrell,
A. M., and Miller, J. F., editors, Evolvable Systems:
From Biology to Hardware, pages 109–120, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Harding, S., Graziano, V., Leitner, J., and Schmidhuber, J.
(2012a). Mt-cgp: Mixed type cartesian genetic pro-
gramming. Genetic and Evolutionary Computation
Conference.
Harding, S., Leitner, J., and Schmidhuber, J. (2006). Ge-
netic programming theory and practice. Journal of
Intelligent and Robotic Systems.
Harding, S., Leitner, J., and Schmidhuber, J. (2012b).
Cartesian genetic programming for image processing.
Genetic Programming Theory and Practice X.
Harding, S., Leitner, J., and Schmidhuber, J. (2013). Carte-
sian Genetic Programming for Image Processing. Ge-
netic Programming Theory and Practice X, pages 31–
44.
Harding, S., Miller, J., and Banzhaf, W. (2011). Self-
modifying cartesian genetic programming. Natural
Computing Series.
Harman, M., Jia, Y., and Langdon, W. (2014). Babel pid-
gin: Sbse can grow and graft entirely new functional-
ity into a real world system. SSBSE Challenge, pages
247–252.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2018).
Mask r-cnn.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Kalkreuth, R., Rudolph, G., and Krone, J. (2016). More ef-
ficient evolution of small genetic programs in Carte-
sian Genetic Programming by using genotypie age.
In 2016 IEEE Congress on Evolutionary Computation
(CEC), pages 5052–5059. IEEE.
Khan, G. M., Miller, J. F., and Halliday, D. M. (2011). Evo-
lution of cartesian genetic programs for development
of learning neural architecture. Evolutionary compu-
tation, 19(3):469–523.
Langdon, W. and Harman, M. (2010). Evolving a cuda ker-
nel from an nvidia template. CEC, pages 1–8.
Langdon, W. B. and Harman, M. (2015). Optimising
existing software with genetic programming. TEC,
19(1):118–135.
Leitner, J., Harding, S., F
¨
orster, A., and Schmidhuber, J.
(2012). Mars terrain image classification using carte-
sian genetic programming. 11th International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS).
Matthews, B. W. (1975). Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta, 405(2):442–451.
Miller, J., Thomson, P., Fogarty, T., and Ntroduction, I.
(1997). Designing electronic circuits using evolu-
tionary algorithms. arithmetic circuits: A case study.
Genetic Algorithms and Evolution Strategies in Engi-
neering and Computer Science, pages 105–131.
Miller, J. F. (1999). An empirical study of the efficiency of
learning boolean functions using a cartesian ge- netic
programming approach. Proceedings of the Genetic
and Evolutionary Computation Conference, volume 2,
pages 1135–1142.
Miller, J. F. (2001). What Bloat? Cartesian Genetic Pro-
gramming on Boolean Problems. 2001 Genetic and
Evolutionary Computation Conference Late Breaking
Papers, pages 295–302.
Miller, J. F. (2011). Cartesian genetic programming.
Springer.
Miller, J. F. (2019). Cartesian genetic programming: its sta-
tus and future. Genetic Programming and Evolvable
Machines, pages 1–40.
Miller, J. F. and Thomson, P. (2000). Cartesian Genetic
Programming. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume
1802, pages 121–132. Springer.
Petke, J., Harman, M., Langdon, W., and Weimer, W.
(2014). Using genetic improvement and code trans-
plants to specialise a c++ program to a problem class.
EuroGP, 137–149.
Rundo, L., Tangherloni, A., Nobile, M. S., Militello, C.,
Besozzi, D., Mauri, G., and Cazzaniga, P. (2019).
Medga: A novel evolutionary method for image en-
hancement in medical imaging systems. Expert Sys-
tems with Applications, 119:387–399.
Stanley, K. O. and Miikkulainen, R. (2002). Efficient evo-
lution of neural network topologies. Journal of Com-
puting and Information Technology, 7:33–47.
White, D. R., Arcuri, A., and Clark, J. A. (2011). Evolution-
ary improvement of programs. TEC, 15(4):515–538.
Whitley, D., Rana, S., and Heckendorn, R. B. (1998). The
island model genetic algorithm: On separability, pop-
ulation size and convergence. Journal of Computing
and Information Technology, 7:33–47.
Wu, F., Weimer, W., Harman, M., Jia, Y., and Krinke, J.
(2015). Deep parameter optimisation. GECCO.
Improving Image Filters with Cartesian Genetic Programming
27