ral Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States, pages
2787–2795.
Christen, P. (2012). Data Matching - Concepts and Tech-
niques for Record Linkage, Entity Resolution, and Du-
plicate Detection. Data-Centric Systems and Applica-
tions. Springer.
Dai, Y., Wang, S., Xiong, N. N., and Guo, W. (2020). A sur-
vey on knowledge graph embedding: Approaches, ap-
plications and benchmarks. Electronics (Switzerland),
9(5):1–29.
Dem
ˇ
sar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. Journal of Machine Learning
Research, 7:1–30.
Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
(2018). Convolutional 2d knowledge graph embed-
dings. In Proc. of AAAI, pages 1811–1818. AAAI
Press.
Feldbauer, R. and Flexer, A. (2019). A comprehensive
empirical comparison of hubness reduction in high-
dimensional spaces. Knowledge and Information Sys-
tems, 59(1):137–166.
Feldbauer, R., Leodolter, M., Plant, C., and Flexer, A.
(2018). Fast approximate hubness reduction for large
high-dimensional data. Proceedings - 9th IEEE Inter-
national Conference on Big Knowledge, ICBK 2018,
pages 358–367.
Feldbauer, R., Rattei, T., and Flexer, A. (2020). scikit-
hubness: Hubness reduction and approximate neigh-
bor search. Journal of Open Source Software,
5(45):1957.
Guo, L., Sun, Z., and Hu, W. (2019). Learning to ex-
ploit long-term relational dependencies in knowledge
graphs. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages
2505–2514. PMLR.
Hara, K., Suzuki, I., Kobayashi, K., and Fukumizu, K.
(2015a). Reducing hubness: A cause of vulnerabil-
ity in recommender systems. In Proc. of SIGIR, pages
815–818. ACM.
Hara, K., Suzuki, I., Kobayashi, K., Fukumizu, K., and
Radovanovic, M. (2016). Flattening the density gra-
dient for eliminating spatial centrality to reduce hub-
ness. In Proc. of AAAI, pages 1659–1665. AAAI
Press.
Hara, K., Suzuki, I., Shimbo, M., Kobayashi, K., Fukumizu,
K., and Radovanovic, M. (2015b). Localized center-
ing: Reducing hubness in large-sample data. In Proc.
of AAAI, pages 2645–2651. AAAI Press.
He, F., Li, Z., Qiang, Y., Liu, A., Liu, G., Zhao, P., Zhao, L.,
Zhang, M., and Chen, Z. (2019). Unsupervised entity
alignment using attribute triples and relation triples.
In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), volume 11446 LNCS,
pages 367–382.
Herbold, S. (2020). Autorank: A python package for auto-
mated ranking of classifiers. Journal of Open Source
Software, 5(48):2173.
Huang, J., Hu, W., Bao, Z., and Qu, Y. (2020). Crowd-
sourced collective entity resolution with relational
match propagation. In Proc. of ICDE, pages 37–48.
IEEE.
Iwasaki, M. (2016). Pruned Bi-directed K-nearest neigh-
bor graph for proximity search. In Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), volume 9939 LNCS, pages 20–33.
J
´
egou, H., Harzallah, H., and Schmid, C. (2007). A con-
textual dissimilarity measure for accurate and efficient
image search. In 2007 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR 2007), 18-23 June 2007, Minneapolis, Min-
nesota, USA. IEEE Computer Society.
Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. (2015). Knowl-
edge graph embedding via dynamic mapping matrix.
In Proc. of ACL, pages 687–696, Beijing, China. As-
sociation for Computational Linguistics.
Kazemi, S. M. and Poole, D. (2018). Simple embedding
for link prediction in knowledge graphs. In Advances
in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montr
´
eal, Canada, pages 4289–4300.
Lample, G., Conneau, A., Ranzato, M., Denoyer, L., and
J
´
egou, H. (2018). Word translation without parallel
data. In Proc. of ICLR. OpenReview.net.
Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015).
Learning entity and relation embeddings for knowl-
edge graph completion. In Proc. of AAAI, pages 2181–
2187. AAAI Press.
Low, T., Borgelt, C., Stober, S., and N
¨
urnberger, A. (2013).
The hubness phenomenon: Fact or artifact? Studies in
Fuzziness and Soft Computing, 285:267–278.
Malkov, Y. A. (2018). Efficient and robust approximate
nearest neighbor search using Hierarchical Navigable
Small World graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 31–33.
Nickel, M., Rosasco, L., and Poggio, T. A. (2016). Holo-
graphic embeddings of knowledge graphs. In Proc. of
AAAI, pages 1955–1961. AAAI Press.
Nickel, M., Tresp, V., and Kriegel, H. (2011). A three-way
model for collective learning on multi-relational data.
In Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Wash-
ington, USA, June 28 - July 2, 2011, pages 809–816.
Omnipress.
Omohundro, S. M. (1989). Five balltree construction al-
gorithms. Technical report, International Computer
Science Institute.
Pachet, F. and Aucouturier, J.-J. (2004). Improving timbre
similarity: How high is the sky. Journal of negative
results in speech and audio sciences, 1(1).
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development
38