ing, HiPC 2012, Pune, India, December 18-22, 2012,
pages 1–9. IEEE Computer Society.
Jin, C., Liu, R., Chen, Z., Hendrix, W., Agrawal, A., and
Choudhary, A. N. (2015). A scalable hierarchical
clustering algorithm using spark. In First IEEE In-
ternational Conference on Big Data Computing Ser-
vice and Applications, BigDataService 2015, Red-
wood City, CA, USA, March 30 - April 2, 2015, pages
418–426. IEEE Computer Society.
Junghanns, M., Petermann, A., Neumann, M., and Rahm, E.
(2017). Management and analysis of big graph data:
Current systems and open challenges. In Zomaya,
A. Y. and Sakr, S., editors, Handbook of Big Data
Technologies, pages 457–505. Springer.
Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis. John
Wiley.
Koga, H., Ishibashi, T., and Watanabe, T. (2007). Fast
agglomerative hierarchical clustering algorithm using
locality-sensitive hashing. Knowl. Inf. Syst., 12(1):25–
53.
Lerm, S., Saeedi, A., and Rahm, E. (2021). Extended affin-
ity propagation clustering for multi-source entity res-
olution. In Sattler, K., Herschel, M., and Lehner,
W., editors, Datenbanksysteme f
¨
ur Business, Tech-
nologie und Web (BTW 2021), 19. Fachtagung des
GI-Fachbereichs ,,Datenbanken und Informationssys-
teme” (DBIS), 13.-17. September 2021, Dresden, Ger-
many, Proceedings, volume P-311 of LNI, pages 217–
236. Gesellschaft f
¨
ur Informatik, Bonn.
Mamun, A.-A., Aseltine, R., and Rajasekaran, S. (2016).
Efficient record linkage algorithms using complete
linkage clustering. PloS one, 11(4):e0154446.
Murtagh, F. (1983). A survey of recent advances in hierar-
chical clustering algorithms. Comput. J., 26(4):354–
359.
Murtagh, F. and Contreras, P. (2012). Algorithms for hierar-
chical clustering: an overview. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov., 2(1):86–97.
Nentwig, M., Groß, A., and Rahm, E. (2016). Holis-
tic entity clustering for linked data. In Domeni-
coni, C., Gullo, F., Bonchi, F., Domingo-Ferrer,
J., Baeza-Yates, R., Zhou, Z., and Wu, X., edi-
tors, IEEE International Conference on Data Mining
Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 194–201. IEEE Com-
puter Society.
Nielsen, F. (2016). Introduction to HPC with MPI for Data
Science. Undergraduate Topics in Computer Science.
Springer.
Rokach, L. and Maimon, O. (2005). Clustering methods. In
Maimon, O. and Rokach, L., editors, The Data Mining
and Knowledge Discovery Handbook, pages 321–352.
Springer.
Saeedi, A., Peukert, E., and Rahm, E. (2017). Com-
parative evaluation of distributed clustering schemes
for multi-source entity resolution. In Kirikova, M.,
Nørv
˚
ag, K., and Papadopoulos, G. A., editors, Ad-
vances in Databases and Information Systems - 21st
European Conference, ADBIS 2017, Nicosia, Cyprus,
September 24-27, 2017, Proceedings, volume 10509
of Lecture Notes in Computer Science, pages 278–
293. Springer.
Saeedi, A., Peukert, E., and Rahm, E. (2018). Using link
features for entity clustering in knowledge graphs.
In Gangemi, A., Navigli, R., Vidal, M., Hitzler, P.,
Troncy, R., Hollink, L., Tordai, A., and Alam, M., ed-
itors, The Semantic Web - 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece, June 3-
7, 2018, Proceedings, volume 10843 of Lecture Notes
in Computer Science, pages 576–592. Springer.
Ward Jr, J. H. (1963). Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244.
Yan, Y., Meyles, S., Haghighi, A., and Suciu, D. (2020).
Entity matching in the wild: A consistent and ver-
satile framework to unify data in industrial applica-
tions. In Maier, D., Pottinger, R., Doan, A., Tan, W.,
Alawini, A., and Ngo, H. Q., editors, Proceedings of
the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020 , pages 2287–
2301. ACM.
KEOD 2021 - 13th International Conference on Knowledge Engineering and Ontology Development
50