Long Journey Toward Explainable Events. The VLDB
journal, 29(1):459–482.
De Boom, C., Van Canneyt, S., and Dhoedt, B. (2015).
Semantics-driven event clustering in Twitter feeds. In
Proceedings of the 5th Workshop on Making Sense of
Microposts, page 2–9, Florence, Italy. CEUR.
Farnaghi, M., Ghaemi, Z., and Mansourian, A. (2020).
Dynamic Spatio-Temporal Tweet Mining for Event
Detection: A Case Study of Hurricane Florence.
International Journal of Disaster Risk Science,
11(3):378–393.
Farzindar, A. and Khreich, W. (2015). A Survey of Tech-
niques for Event Detection in Twitter. Computational
Intelligence, 31(1):132–164.
Fung, G. P. C., Yu, J. X., Yu, P. S., and Lu, H. (2005). Pa-
rameter Free Bursty Events Detection in Text Streams.
In VLDB ’05: 31st International Conference on Very
Large Data Bases, page 181–192, Trondheim, Nor-
way. VLDB Endowment.
Hasan, M., Orgun, M. A., and Schwitter, R. (2019). Real-
Time Event Detection from the Twitter Data Stream
Using the TwitterNews+ Framework. Information
Processing & Management, 56(3):1146–1165.
Hossny, A. H. and Mitchell, L. (2018). Event Detection in
Twitter: A Keyword Volume Approach. In 2018 IEEE
International Conference on Data Mining Workshops
(ICDMW), page 1200–1208, Singapore. IEEE.
Hsieh, L.-C., Lee, C.-W., Chiu, T.-H., and Hsu, W. (2012).
Live Semantic Sport Highlight Detection Based on
Analyzing Tweets of Twitter. In 2012 IEEE Inter-
national Conference on Multimedia and Expo, page
949–954, Melbourne, VIC, Australia. IEEE.
Hua, T., Chen, F., Zhao, L., Lu, C.-T., and Ramakrishnan,
N. (2016). Automatic Targeted-Domain Spatiotem-
poral Event Detection in Twitter. GeoInformatica,
20(4):765–795.
Huang, Y., Shen, C., and Li, T. (2018). Event Summariza-
tion for Sports Games using Twitter Streams. World
Wide Web, 21(3):609–627.
Ifrim, G., Shi, B., and Brigadir, I. (2014). Event Detection
in Twitter using Aggressive Filtering and Hierarchical
Tweet Clustering. In Proceedings of the SNOW 2014
Data Challenge, page 33–40, Seoul, Korea. CEUR.
Kubo, M., Sasano, R., Takamura, H., and Okumura, M.
(2013). Generating Live Sports Updates from Twit-
ter by Finding Good Reporters. In Proceedings of
the 2013 IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), volume 1, pages 527–534, At-
lanta, Georgia, USA. IEEE Computer Society.
Liu, C., Xu, R., and Gui, L. (2013). Burst Events Detec-
tion on Microblogging. In Proceedings of the 2013
International Conference on Machine Learning and
Cybernetics, page 1921–1924, Tianjin, China. IEEE.
L
¨
ochtefeld, M., J
¨
ackel, C., and Kr
¨
uger, A. (2015). TwitSoc-
cer: Knowledge-Based Crowd-Sourcing of Live Soc-
cer Events. In MUM ’15: Proceedings of the 14th
International Conference on Mobile and Ubiquitous
Multimedia, pages 148–151, Linz, Austria. ACM.
Madani, A., Boussaid, O., and Zegour, D. (2015). Real-
Time Trending Topics Detection and Description from
Twitter Content. Social Network Analysis and Mining,
5(1):1–13.
Madani, A., Boussaid, O., and Zegour, D. E. (2014). What’s
Happening: A Survey of Tweets Event Detection . In
INNOV 2014 : Proceedings of the Third International
Conference on Communications, Computation, Net-
works and Technologies, page 16–22, Nice, France.
IARIA.
Makkonen, J., Ahonen-Myka, H., and Salmenkivi, M.
(2004). Simple Semantics in Topic Detection and
Tracking. Information Retrieval, 7(3):347–368.
Maldonado, A. and Lewis, D. (2016). Self-Tuning Ongo-
ing Terminology Extraction Retrained on Terminol-
ogy Validation Decisions. In Proceedings of the 12th
International Conference on Terminology and Knowl-
edge Engineering, page 91–100, Copenhagen, Den-
mark. Copenhagen Business School.
Mamo, N., Azzopardi, J., and Layfield, C. (2021). An
Automatic Participant Detection Framework for Event
Tracking on Twitter. Algorithms, 14(3):92.
McMinn, A. J. and Jose, J. M. (2015). Real-Time Entity-
Based Event Detection for Twitter. In Mothe, J.,
Savoy, J., Kamps, J., Pinel-Sa, Pinel-Sauvagnat, K.,
Jones, G., San Juan, E., Capellato, L., and Nicola, F.,
editors, CLEF 2015: Experimental IR Meets Multilin-
guality, Multimodality, and Interaction, pages 65–77,
Toulouse, France. Springer International Publishing.
Mishra, S. and Diesner, J. (2016). Semi-Supervised Named
Entity Recognition in Noisy-Text. In Proceedings of
the 2nd Workshop on Noisy User-generated Text, page
203–212, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.
Mohd, M. (2007). Named Entity Patterns Across News Do-
mains. In Proceedings of the BCS IRSG Symposium:
Future Directions in Information Access 2007, pages
1–6, Glasgow, Scotland. BCS, The Chartered Institute
for IT.
Panagiotou, N., Katakis, I., and Gunopulos, D. (2016). De-
tecting Events in Online Social Networks: Definitions,
Trends and Challenges, volume 9580 of Lecture Notes
in Computer Science. Springer International Publish-
ing, Cham.
Rudnik, C., Ehrhart, T., Ferret, O., Teyssou, D., Troncy, R.,
and Tannier, X. (2019). Searching News Articles Us-
ing an Event Knowledge Graph Leveraged by Wiki-
data . In WWW ’19: Companion Proceedings of The
2019 World Wide Web Conference, page 1232–1239,
San Francisco, CA, USA. Association for Computing
Machinery.
Rudra, K., Ghosh, S., Ganguly, N., Goyal, P., and Ghosh, S.
(2015). Extracting Situational Information from Mi-
croblogs during Disaster Events. In Proceedings of
the 24th ACM International on conference on infor-
mation and knowledge management, pages 583–592,
Melbourne, Australia. ACM.
Who? What? Event Tracking Needs Event Understanding
145