Breiman, L. (1996). Bagging predictors. Machine learning,
24(2):123–140.
Cazzanti, L. (2009). Similarity Discriminant Analysis.
Chabanet, S., Thomas, P., El-Haouzi, H. B., Morin, M., and
Gaudreault, J. (2021). A knn approach based on icp
metrics for 3d scans matching: an application to the
sawing process. In 17th IFAC Symposium on Infor-
mation Control Problems in Manufacturing, INCOM
2021.
Del Frate, F. and Solimini, D. (2004). On neural network
algorithms for retrieving forest biomass from sar data.
IEEE Transactions on Geoscience and Remote Sens-
ing, 42(1):24–34.
Duin, R. P. and Pekalska, E. (2009). The dissimilarity rep-
resentation for pattern recognition: a tutorial. In Tech-
nical Report.
Freund, Y., Schapire, R. E., et al. (1996). Experiments with
a new boosting algorithm. In icml, volume 96, pages
148–156. Citeseer.
Goulet, P. (2006). Optitek: User’s manual.
Hansen, L. K. and Salamon, P. (1990). Neural network en-
sembles. IEEE transactions on pattern analysis and
machine intelligence, 12(10):993–1001.
Ho, T. K. (1998). The random subspace method for con-
structing decision forests. IEEE transactions on pat-
tern analysis and machine intelligence, 20(8):832–
844.
Martineau, V., Morin, M., Gaudreault, J., Thomas, P., and
Bril El-Haouzi, H. (2021). Neural network architec-
tures and feature extraction for lumber production pre-
diction. In The 34th Canadian Conference on Artifi-
cial Intelligence. Springer.
Morin, M., Gaudreault, J., Brotherton, E., Paradis, F., Rol-
land, A., Wery, J., and Laviolette, F. (2020). Machine
learning-based models of sawmills for better wood al-
location planning. International Journal of Produc-
tion Economics, 222:107508.
Morin, M., Paradis, F., Rolland, A., Wery, J., Laviolette,
F., and Laviolette, F. (2015). Machine learning-based
metamodels for sawing simulation. In 2015 Win-
ter Simulation Conference (WSC), pages 2160–2171.
IEEE.
Morneau-Pereira, M., Arabi, M., Gaudreault, J., Nourelfath,
M., and Ouhimmou, M. (2014). An optimization
and simulation framework for integrated tactical plan-
ning of wood harvesting operations, wood allocation
and lumber production. In MOSIM 2014, 10eme
Conf
´
erence Francophone de Mod
´
elisation, Optimisa-
tion et Simulation.
Nguyen, D. and Widrow, B. (1990). Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptive weights. In 1990 IJCNN Inter-
national Joint Conference on Neural Networks, pages
21–26. IEEE.
Pekalska, E., Duin, R. P., and Pacl
´
ık, P. (2006). Prototype
selection for dissimilarity-based classifiers. Pattern
Recognition, 39(2):189–208.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660.
Schleif, F.-M. and Tino, P. (2015). Indefinite prox-
imity learning: A review. Neural Computation,
27(10):2039–2096.
Selma, C., El Haouzi, H. B., Thomas, P., Gaudreault, J.,
and Morin, M. (2018). An iterative closest point
method for measuring the level of similarity of 3d
log scans in wood industry. In Service Orientation in
Holonic and Multi-Agent Manufacturing, pages 433–
444. Springer.
Shin, Y. and Karniadakis, G. E. (2020). Trainability of relu
networks and data-dependent initialization. Journal of
Machine Learning for Modeling and Computing, 1(1).
Sylvain, J.-D., Drolet, G., and Brown, N. (2019). Mapping
dead forest cover using a deep convolutional neural
network and digital aerial photography. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 156:14–
26.
Thomas, P., El Haouzi, H. B., Suhner, M.-C., Thomas, A.,
Zimmermann, E., and Noyel, M. (2018). Using a clas-
sifier ensemble for proactive quality monitoring and
control: The impact of the choice of classifiers types,
selection criterion, and fusion process. Computers in
Industry, 99:193–204.
Thomas, P. and Thomas, A. (2011). Multilayer percep-
tron for simulation models reduction: Application to
a sawmill workshop. Engineering Applications of Ar-
tificial Intelligence, 24(4):646–657.
Todoroki, C. et al. (1990). Autosaw system for sawing sim-
ulation. New Zealand Journal of Forestry Science,
20(3):332–348.
Wenshu, L., Lijun, S., and Jinzhuo, W. (2015). Study on
wood board defect detection based on artificial neural
network. The Open Automation and Control Systems
Journal, 7(1).
Wery, J., Gaudreault, J., Thomas, A., and Marier, P. (2018).
Simulation-optimisation based framework for sales
and operations planning taking into account new prod-
ucts opportunities in a co-production context. Com-
puters in industry, 94:41–51.
Yu, H. and Wilamowski, B. M. (2011). Levenberg-
marquardt training. Industrial electronics handbook,
5(12):1.
Zhang, B., Zhao, L., and Zhang, X. (2020). Three-
dimensional convolutional neural network model for
tree species classification using airborne hyperspectral
images. Remote Sensing of Environment, 247:111938.
NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications
210