of an accident. Thus, the behaviour of the vehicles in
the simulation can be compared with the behaviour of
the model vehicles in reality. It is also conceivable to
extend this object detection by a distance
measurement to the detected objects on the lane. This
can be used, for example, to protect the radar sensor
in self-driving cars. When developing software for
hardware with limited resources for low-power IoT
devices it is also interesting to see how the run time
can be improving with a Raspberry Pi 4 B with
hardware extension such as the Intel Neural Compute
Stick 2 (CNET, 2018) or the Google Coral USB
Accelerator (Coral, 2020). This approach will be
explored in our future research.
REFERENCES
Beltrán, J., Guindel, C., Moreno, F. M., Cruzado, D., García,
F., De La Escalera, A., 2018. BirdNet: A 3D Object
Detection Framework from LiDAR Information. 2018
21st International Conference on Intelligent
Transportation Systems (ITSC), IEEE, ISBN 978-1-
7281-0324-2.
Chen, Y. H., 2021. TensorFlow 2 Detection Model Zoo.
Github.com. [online]. Available at: https://github.com/
tensorflow/models/blob/master/research/object_detectio
n/g3doc/tf2_detection_zoo.md. Accessed: 03/03/2021.
CNET, 2018. Faster new Intel AI brain sticks into the side of
your PC for $99. The Neural Compute Stick 2 uses a
Movidius Myriad X artificial intelligence chip and is
geared for prototype projects. Cnet.com. [online].
Available at: https://www.cnet.com/news/faster-new-
intel-ai-brain-sticks-into-the-side-of-your-pc-for-99/.
Accessed: 10/05/2021.
Coral, 2020. USB Accelerator datasheet. Coral.ai. [online].
Available at: https://coral.ai/docs/accelerator/ datasheet/.
Accessed: 10/05/2021.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
Zisserman, A., 2010. The PASCAL visual object classes
(VOC) challenge. International Journal of Computer
Vision (IJCV), Volume 88, Issue 2, pp. 303-338.
Fink, M., Liu, Y., Engstle, A., Schneider, S. A., 2019. Deep
learning-based multi-scale multi-object detection and
classification for autonomous driving. In:
Fahrerassistenzsysteme 2018, pp. 233-242. Springer,
ISBN 978-3-658-23751-6.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S., Murphy, K., 2017. Speed/Accuracy Trade-Offs for
Modern Convolutional Object Detectors. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). ISBN 978-1-5386-0457-1.
Hui, J., 2018. mAP (mean Average Precision) for Object
Detection. COCO mAP. Jonathan-hui.medium.com.
[online]. Available at: https://jonathan-hui.medium.com/
map-mean-average-precision-for-object-detection-45c1
21a31173. Accessed: 10/05/2021.
Kahn, G., Abbeel, P., Levine, S., 2020. LaND: Learning to
Navigate from Disengagements. arXiv: 2010.04689.
Kuzmic, J., Rudolph, G., 2020. Unity 3D Simulator of
Autonomous Motorway Traffic Applied to Emergency
Corridor Building. In Proceedings of the 5th
International Conference on Internet of Things, Big Data
and Security, ISBN 978-989-758-426-8, pp. 197-204.
Kuzmic, J., Rudolph, G., 2021. Comparison between Filtered
Canny Edge Detector and Convolutional Neural
Network for Real Time Lane Detection in a Unity 3D
Simulator. In Proceedings of the 6th International
Conference on Internet of Things, Big Data and Security,
ISBN 978-989-758-504-3, pp. 148-155.
Li, P., Chen, X., Shen, S., 2019. Stereo R-CNN Based 3D
Object Detection for Autonomous Driving. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7644-7652.
Lin, T. Y., Maire, M., Belongie, S, Hays, J., Perona, P.,
Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft
COCO: common objects in context. In: Fleet D, Pajdla T,
Schiele B, Tuytelaars T, editors. Computer Vision-
ECCV 2014. Springer, ISBN 978-3-319-10602-1, pp.
740-755.
Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., Vanhoucke V., 2018. Sim-To-Real:
Learning Agile Locomotion For Quadruped Robots.
Proceedings of Robotics: Science and System XIV,
ISBN 978-0-9923747-4-7.
TensorFlow Core, 2021. TensorFlow Core v2.4.1, API
Documentation. TensorFlow.org. [online]. Available at:
https://www.tensorflow.org/api_docs. Accessed:
07/05/2021.
TensorFlow Lite, 2021. For Mobile & IoT. TensorFlow.org.
[online]. Available at: https://www.tensorflow.org/lite.
Accessed: 09/05/2021.
TensorFlow Performance, 2021. For Mobile & IoT, Post-
training quantization. TensorFlow.org. [online].
Available at: https://www.tensorflow.org/lite/performan
ce/post_training_quantization. Accessed: 09/05/2021.
Tzutalin, 2015. LabelImg. Github.com. [online]. Available
at: https://github.com/tzutalin/labelImg. Accessed:
07/05/2021.
Vuppala, S., R., 2020. Getting data annotation format right
for object detection tasks. Medium.com. [online].
Available at: https://medium.com/analytics-vidhya/
getting-data-annotation-format-right-for-object-
detection-tasks-f41b07eebbf5. Accessed: 03.03.2021.
Wikipedia, 2021. Tesla Autopilot, Driving features.
Wikipedia.org. [online]. Available at:
https://en.wikipedia.org/wiki/Tesla_Autopilot#cite_note
-:2-70. Accessed: 05/03/2021.
Zaghari, N., Fathy, M., Jameii, S. M., Shahverdy, M., 2021.
The improvement in obstacle detection in autonomous
vehicles using YOLO non-maximum suppression fuzzy
algorithm. The Journal of Supercomputing (2021). DOI:
10.1007/s11227-021-03813-5.
Zhu, Q., Wang, L., Wu, Y., Shi, J. (2008) Contour Context
Selection for Object Detection: A Set-to-Set Contour
Matching Approach. In: Forsyth D., Torr P., Zisserman
A. (eds) Computer Vision – ECCV 2008. ECCV 2008.
Lecture Notes in Computer Science, vol 5303. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-
88688-4_57 ISBN 978-3-540-88685-3.