REFERENCES
Blei, D. M. (2012). Probabilistic topic models. Commun.
ACM, 55(4):77–84.
Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of ACL, 5:135–146.
Coelho, J., Neto, A., Tavares, M., Coutinho, C., Oliveira, J.,
Ribeiro, R., and Batista, F. (2021). Semantic search of
mobile applications using word embeddings. In Proc.
of SLATE 2021.
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. (2017). Supervised learning of univer-
sal sentence representations from natural language in-
ference data. In Proc. of EMNLP 2017, pages 670–
680, Copenhagen, Denmark. Association for Compu-
tational Linguistics.
Datta, A., Dutta, K., Kajanan, S., and Pervin, N. (2012).
Mobilewalla: A mobile application search engine. In
Zhang, J. Y., Wilkiewicz, J., and Nahapetian, A., edi-
tors, Mobile Computing, Applications, and Services,
pages 172–187, Berlin, Heidelberg. Springer Berlin
Heidelberg.
Datta, A., Kajanan, S., and Pervin, N. (2013). A Mobile
App Search Engine. Mobile Networks and Applica-
tions, 18.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proc.
of NAACL 2019.
Ghannay, S., Favre, B., Est
`
eve, Y., and Camelin, N. (2016).
Word embedding evaluation and combination. In
Proc. of LREC 2016, pages 300–305, Portoro
ˇ
z, Slove-
nia. ELRA.
Iqbal, M. (2020). App download and usage statistics (2020).
web page.
Khattab, O. and Zaharia, M. (2020). Colbert: Efficient and
effective passage search via contextualized late inter-
action over BERT. In Proc. of SIGIR 2020, Virtual
Event, China, July 25-30, 2020, pages 39–48. ACM.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.
Park, D. H., Fang, Y., Liu, M., and Zhai, C. (2016). Mo-
bile app retrieval for social media users via inference
of implicit intent in social media text. In Proc. of the
25th ACM Int. on Conf. on Information and Knowl-
edge Management, CIKM ’16, page 959–968, New
York, NY, USA. ACM.
Park, D. H., Liu, M., Zhai, C., and Wang, H. (2015). Lever-
aging user reviews to improve accuracy for mobile
app retrieval. In Baeza-Yates, R., Lalmas, M., Mof-
fat, A., and Ribeiro-Neto, B. A., editors, Proc. of the
38th Int. ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Santiago, Chile,
August 9-13, 2015, pages 533–542. ACM.
Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, X.,
Dong, D., Wu, H., and Wang, H. (2020). Rocketqa:
An optimized training approach to dense passage re-
trieval for open-domain question answering. CoRR,
abs/2010.08191.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In
Proc. of EMNLP 2019. Association for Computational
Linguistics.
Ribeiro, E., Ribeiro, R., Batista, F., and Oliveira, J.
(2020). Using topic information to improve non-exact
keyword-based search for mobile applications. In
Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems, pages 373–386,
Cham. Springer International Publishing.
Samarawickrama, S., Karunasekera, S., Harwood, A., and
Kotagiri, R. (2017). Search result personalization in
twitter using neural word embeddings. In Bellatreche,
L. and Chakravarthy, S., editors, Big Data Analyt-
ics and Knowledge Discovery, pages 244–258, Cham.
Springer International Publishing.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. (2020).
Transformers: State-of-the-art natural language pro-
cessing. In Proc. of EMNLP 2020: System Demon-
strations, pages 38–45. Assoc. for Computational Lin-
guistics.
Yao, J., Dou, Z., and Wen, J.-R. (2020). Employing per-
sonal word embeddings for personalized search. In
Proc. of SIGIR ’20, SIGIR ’20, page 1359–1368, New
York, NY, USA. ACM.
Yates, A., Nogueira, R., and Lin, J. (2021). Pretrained trans-
formers for text ranking: BERT and beyond. In Proc.
of WSDM’21, Virtual Event, Israel, pages 1154–1156.
ACM.
Zhuo, J., Huang, Z., Liu, Y., Kang, Z., Cao, X., Li, M., and
Jin, L. (2015). Semantic matching in app search. In
Proc. of WSDM ’15, WSDM ’15, page 209–210, New
York, NY, USA. ACM.
KDIR 2021 - 13th International Conference on Knowledge Discovery and Information Retrieval
232