Dredze, M. (2012). How Social Media Will Change Public
Health. IEEE Intelligent Systems (pp. 81- 84). IEEE.
Ghani, N. A., Hamid, S., Hashem, I. A. T., Ahmed, E.
(2019). Social media big data analytics: A survey.
Computers in Human Behavior, 101, 417-428.
Gong, V. X., Daamen, W., Bozzon, A., Hoogendoorn, S. P.
(2020). Crowd characterization for crowd management
using social media data in city events. Travel Behaviour
and Society, 20, 192-212.
Gosal, A. S., Geijzendorffer, I. R., Václavík, T., Poulin, B.,
Ziv, G. (2019). Using social media, machine learning
and natural language processing to map multiple
recreational beneficiaries. Ecosystem Services, 38.
He, W., Tian, X., Hung, A., Akula, V., Zhang, W. (2018).
Measuring and comparing service quality metrics
through social media analytics: a case study.
Information Systems and e-Business Management, 16,
579–600.
Heikinheimo, V., Tenkanen, H., Bergroth, C., Järv, O.,
Hiippala, T., Toivonenad, T. (2020). Understanding the
use of urban green spaces from user-generated
geographic information. Landscape and Urban
Planning, 201.
Hidayatullah, A. F., Pembrani, E. C., Kurniawan, W.,
Akbar, G., Pranata, R. (2018). Twitter Topic Modeling
on Football News. 2018 3rd International Conference
on Computer and Communication Systems (ICCCS)
(pp. 467-471). Nagoya: IEEE.
Hong, L., Fu, C. H., Wu. J, Frias-Martinez, V. (2018).
Information Needs and Communication Gaps between
Citizens and Local Governments Online during Natural
Disasters. Information Systems Frontiers, 20, 1027–
1039.
Huang, H. M, Chiu, Ch. J . (2020). Understanding public
interest and needs in health policies through the
application of social network analysis on a
governmental Facebook fan page. BMC Public Health,
20.
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y.,
Zhao, L. (2019). Latent Dirichlet allocation (LDA) and
topic modeling: models, applications, a survey.
Multimedia Tools and Applications volume, 78, pages
15169–15211.
Jeong, B., Yoona, J., Lee J. M. (2019). Social media mining
for product planning: A product opportunity mining
approach based on topic modeling and sentiment
analysis. International Journal of Information
Management, 48, 280-290.
Kankanamge, N., Yigitcanlar, T., Goonetilleke, A.,
Kamruzzaman, Md. (2020). Determining disaster
severity through social media analysis: Testing the
methodology with South East Queensland Flood
tweets. International Journal of Disaster Risk
Reduction, 42.
Karami, A., Elkouri, A. (2019). Political Popularity
Analysis in Social Media. Information in
Contemporary Society (pp. 456-465).
Kim, J., Hastak, M. (2018). Social network analysis:
Characteristics of online social networks after a
disaster. International Journal of Information
Management, 38(1), 86-96.
Kim, J., Park, H. (2020). A framework for understanding
online group behaviors during a catastrophic event.
International Journal of Information Management, 51.
Ko, N., Jeong, B., Choi, S., Yoon, J. (2017). Identifying
Product Opportunities Using Social Media Mining:
Application of Topic Modeling and Chance Discovery
Theory. IEEE Access.
Lee, I. (2018). Social media analytics for enterprises:
Typology, methods, and processes. Business Horizons,
Volume 61(Issue 2), 199-210.
Lemay, D. J., Basnet, R. B., Doleck, T., Bazelais, P. (2019).
Social network analysis of twitter use during the AERA
2017 annual conference. Education and Information
Technologies, 24, 459–470.
Li, X., Wang, Z., Gao, C., Shi, L. (2017). Reasoning human
emotional responses from large-scale social and public
media. Applied Mathematics and Computation, 310,
182-193.
Li, Z., Fan, Y., Jiang, B. , Lei, T., Liu, W. (2019). A survey
on sentiment analysis and opinion mining for social
multimedia. Multimed Tools Appl, 78, 6939–6967.
Lia, S., Yu, C., Wang, Y., Babud, Y. (2019). Exploring
adverse drug reactions of diabetes medicine using
social media analytics and interactive visualizations.
International Journal of Information Management, 48,
228-237.
Lin, Y., Geertman, S. (2019). Can Social Media Play a Role
in Urban Planning? A Literature Review. In
Computational Urban Planning and Management for
Smart Cities (pp. 69-84). Springer.
Liu, S., Young, S. D. (2018). A survey of social media data
analysis for physical activity surveillance. Journal of
Forensic and Legal Medicine, 57, 33-36.
Miyazawa, S., Song, X., Xia, T., Shibasaki, R., Kaneda, H.
(2018). Integrating GPS trajectory and topics from
Twitter stream for human mobility estimation.
Frontiers of Computer Science, 13, 460–470.
Mrsic, L., Zajec, S., Kopal, R. (2019). Appliance of Social
Network Analysis and Data Visualization Techniques
in Analysis of Information Propagation. ACIIDS 2019:
Intelligent Information and Database Systems. Phuket,
Thailand.
Nagayoshi, H. Takikawa and K. (2017). Political
polarization in social media: Analysis of the “Twitter
political field” in Japan. 017 IEEE International
Conference on Big Data (Big Data). Boston, MA, USA.
Nguyen, T., Larsen, M. E., O’Dea, B., Phung, D.,
Venkatesh, S., Christensen, H. (2017). Estimation of
the prevalence of adverse drug reactions from social
media. International Journal of Medical Informatics,
102, 130-137.
Oyebode, O., Orji, R. (2019). Social Media and Sentiment
Analysis: The Nigeria Presidential Election 2019. 2019
IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON),
(pp. 0140-0146). Vancouver.
Pudjajana, A. M., Manongga, D., Iriani, A., Purnomo, H. D.
(2018). Identification of Influencers in Social Media